
CXC-DM-010

CXC Data Model

Chandra Data Model Manual, Part 1:

User Introdution to

Filtering and Binning in CIAO

CIAO 2.2 Edition

Chandra X-ray Center

Otober 22, 2001

2

Contents

I Introdution to the Data Model 5

1 What is the Data Model? 7

1.1 General Desription . 7

1.2 Organization of this Guide . 7

2 Getting Started 9

2.1 Brief Overview . 9

2.2 System Setup . 10

2.3 Data Preparation . 10

2.4 Running Data Model Tools . 10

2.4.1 The Command-Line Version . 10

2.4.2 GUI apabilities . 11

2.4.3 Getting Help . 11

3 The Data Model Walkthrough 13

3.1 Manipulating Data . 13

3.2 Syntax: Quik Introdution . 14

3.2.1 Basi DM syntax . 14

3.2.2 Multiple input and output �les . 14

3.3 Introdution to the tools . 15

3

4 CONTENTS

3.3.1 dmlist . 15

3.3.2 dmopy . 21

3.3.3 dmextrat . 22

3.3.4 Other simple DM tools . 23

dmappend . 23

dmmerge . 23

dmhedit . 23

dmregrid . 24

dmimgal . 26

dmstat . 26

3.4 Design Overview . 27

3.5 Filtering . 28

3.5.1 Syntax . 28

3.5.2 Virtual Files . 30

3.6 Syntax summary . 32

3.7 Multiple File Format Support . 33

3.8 Data subspae . 33

3.9 Header keys . 34

Part I

Introdution to the Data Model

5

Chapter 1

What is the Data Model?

1.1 General Desription

This manual desribes the �ltering and binning language used throughout the CIAO data analysis pakage,

and some of the basi tools used to do simple analysis tasks. The name \Data Model" reets the intent

that there be a high level interfae whih an be used on data �les of di�erent formats: we have a single

abstrat desription (`model') that enompasses all the data �les we use. Although the event list, soure

lists and exposure maps produed as output produts from X-ray observations are quite di�erent in their

information ontent, they atually have a lot in ommon in their underlying struture.

An important aspet of the Data Model is that any program that asks for a data �le name as input will

aept a `virtual �le' string whih will ause the program to see a �ltered version of the �le in question.

The underlying �le an be any of the formats supported by our `data model' subroutine library, urrently

inluding FITS, and IRAF QPOE and IMH �les.

A ommon use of the `virtual �le' syntax is to reate on disk a �ltered version of the input �le. The dmopy

program is used to do this.

1.2 Organization of this Guide

This guide is divided into three parts: (I) an Introdution, (II) a guide to the DM tools, and (III) the

Referene Manual. Part I ontains information to assist you with getting started, a summary of the available

ommands, and a simple walkthrough hapter. Part II inludes a set of detailed examples. Part III ontains

more detailed referene material that will be useful one you have beome familiar with the basis of using

CIAO. You should also refer to the online threads at as.harvard.edu/iao/douments threads.html.

7

8 CHAPTER 1. WHAT IS THE DATA MODEL?

Chapter 2

Getting Started

2.1 Brief Overview

The ore utility tools doumented in this manual are:

dmlist: to examine the ontents of data �les

dmopy: to �lter or bin images or tables

dmextrat: to reate PHA tables

In addition, there are a number of more speialized tools whih are doumented in the online `ahelp' and

threads.

dmhedit allows you to edit the header keys in a �le.

dmtal allows you to generate new table olumns as arithmeti ombinations of old ones.

dmjoin interpolates one table on the grid provided by another.

dmmerge merges two event lists whih have the same pointing diretion and roll angle (use reprojet -

events to align two event lists with di�erent pointings).

dmgti: to make a time �lter from a time ordered housekeeping �le by speifying onstraints.

dmregrid regrids an image, saling and rotating it.

dmsort sorts a table.

dmstat gives basi statistis on a table.

dmimgal allows you to add, subtrat, multiply, divide and ompare two images.

9

10 CHAPTER 2. GETTING STARTED

dmoords onverts between Chandra oordinate systems.

dmmakepar makes a parameter �le from a table header; this is oasionally needed to regenerate an

`obs.par' �le from the event list, for pipeline tools whih need suh an input.

dmappend is a simple tool whih adds a single blok (table or image) from one �le onto the end of another.

2.2 System Setup

Users are enouraged to read about the setup of the CIAO software and parameter �les as desribed in the

Beginner's Guide.

2.3 Data Preparation

One purpose of the data model is to handle many �le formats avoiding the need for any speial �le preparation.

The urrent release handles FITS, IRAF QPOE and IMH �les.

2.4 Running Data Model Tools

2.4.1 The Command-Line Version

After you have initialized CIAO, the data model tools are

available from the unix prompt on the ommand line. Some sample data �les may be downloaded from

http://hea-www.harvard.edu/ jm/as/dm/examples.tar

A trivial example: The �le evt.fits is an event list in FITS format. FITS �les onsist of a number of

setions, and in this partiular ase one of the setions is alled EVENTS, ontaining a list of photons. The

ommand

unix: dmopy "evt.fits[EVENTS℄" opy.fits

generates a �le opy.fits ontaining the event list data and its assoiated header.

The DM also onsiders ertain other parts of the �le to `belong' to the events setion: the `good time

intervals' are stored in a separate setion but are automatially opied along with the events data, beause

in the abstrat model that information is part of the 'blok' of data that is being opied. In ontrast, it is

possible to append unrelated data setions to evt.�ts, but these will not in general be opied (dmopy has

a parameter 'option=all' whih will fore all the setions to be opied).

As usual in Unix, the user must have write permission in the urrent diretory, and as for most CXC tools,

if the output �le exists before running dmopy, you must set the `lobber' parameter to `yes' to overwrite

it.

2.4. Running Data Model Tools 11

2.4.2 GUI apabilities

Some of the apabilities of the Data Model tools are available in GUIs alled FirstLook and FilterWindow.

Please refer to the Beginner's Guide for information on those tools.

2.4.3 Getting Help

The help �les for a given task an be displayed using the ahelp ommand, for example:

unix: ahelp dmopy

The amount of information and format an be spei�ed using options with ahelp:

-l for a more detailed desription. This is the default.

-s for a short desription

-w to display the full help �le in HTML format via a browser.

The detailed syntax an be found with 'ahelp dm' whih points the user to a set of help �les suh as 'ahelp

dmbinning'; these �les over a lot of the same ground as this manual.

12 CHAPTER 2. GETTING STARTED

Chapter 3

The Data Model Walkthrough

3.1 Manipulating Data

The CXC analysis and proessing software is built on a ommon interfae library alled the CXC Data Model

(CXCDM or just DM), whih provides users with a powerful, built-in data seletion and binning apability.

The library is optimized for use with X-ray astronomy data analysis, but is quite general and may be used

for other purposes whih involve manipulating tabular and image data with lots of assoiated meta data.

The user doesn't need to know the details of our abstrat software model, but will need to pik up some of

the basi ideas to get full use out of the software. In partiular, beause our software supports a number of

�le formats, not just FITS, we an't use spei�ally FITS terminology (HDUs, binary table extensions, and

so on), sine that won't be relevant when other formats are in use.

The CXCDM will work with PROS style QPOE �les as well as FITS �les, and its programs will work both

as IRAF tasks and on the ommand line like FTOOLS. Our hope is that the learning urve will be short

for both PROS and FTOOLS users. CXC analysis tools use the familiar parameter interfae used by both

PROS and FTOOLS; that parameter interfae is separate from the CXCDM, and will be overed in another

doument.

Unfortunately, there are some remaining ompatibility problems with PROS, whih was written to deal with

ROSAT data and annot handle all aspets of Chandra data; however, the timing tools in partiular have

been suessfully used with Chandra �les.

This hapter introdues you to the Data Model on two di�erent levels. First spei� examples are provided

of the usage of the tools. Following that is a disussion of its design, and an introdution to its features,

inluding omparison with FITS and QPOE terminology.

13

14 CHAPTER 3. THE DATA MODEL WALKTHROUGH

3.2 Syntax: Quik Introdution

3.2.1 Basi DM syntax

The CXCDM omes with a set of basi �le manipulation tools, of whih the most important is dmopy. This

tool, in the spirit of Unix's at, performs a variety of important tasks: it opies a virtual �le to a real �le,

optionally hanging the kernel (�le format). It thus provides �ltering and binning apability, and also format

onversion.

Data Model tools use as input a �lename followed by a series of optional quali�ers in square brakets [℄:

filename[blok℄[filter℄[olumns/binning℄[opt℄

{blok identi�es whih setion of the data�le is to be used

{�lter spei�es the �lter to be applied

{olumns spei�es whih olumns of a table should be used (only used when output is a table)

{binning makes an image from a table (only used when output is an image).

{opt allows the user to modify the default behaviour of the tool.

Any quali�er an be omitted, but those whih are used should be in the order given above.

Data�le names are ase sensitive; other names are ase insensitive for mathing (but ase sensitive for

output).

Full detail on syntax an be found in Setion 3.5.1, Setion 3.6, and Chapter ??.

3.2.2 Multiple input and output �les

In addition to the generi DM syntax, DM tools an operate on `staks' of data. This essentially runs the

tool in a loop operating on several �les.

There are three forms of staks:

1) Asii �le staks

dmopy �instk �outstk

where instk and outstk are ASCII �les, ontaining one line per entry, eah line should be a valid DM

blok de�nition (a �lename, or a �ltered �lename). This will perform dmopy multiple times, one on eah

input/output pair.

3.3. Introdution to the tools 15

2) Grid staks

It is possible to treat multiple `regions' as separate input �les.

dmextrat "evt.fits[sky=pgrid(4096.0,4096.0,0.0:100.0:10.0,0.0:360.0:360.0)℄" �outstk

option=pha1

Extrats a set of spetra in ten annuli inreasing by 10 pixels radius in eah step. There are two grid

operators, pgrid (pie grid) and rgrid (retangle grid). Their syntax is:

pgrid(xen,yen,rmin:rmax:dr,thetamin:thetamax:dtheta)

rgrid(xmin:xmax:dx,ymin:ymax:dy)

More details are given in setion ??.

3) Wild ard staks

dmextrat "ais*evt1.fits" out.fits option=pha2

takes several event �les mathing the unix �lter (but not expanded by unix; you need the quotes to prevent

this) and extrats a spetrum from eah.

3.3 Introdution to the tools

The following setions allow the users to familiarize themselves with some of the apabilities of the Data

Model by running ommands in various ways. They begin in a sequene whih is likely to be part of a data

analysis session: examining the ontents of �les using dmlist, �ltering a �le using dmopy, and extrating a

spetrum using dmextrat. However, for an example of an analysis session, the user is referred to Beginner's

Guide and Siene Threads.

To run a program, you an either type the name, say `dmopy', and hit return, to be prompted for parameters,

or give the parameters on the ommand line.

3.3.1 dmlist

Often in preparation for �ltering a �le, it may be neessary to examine the ontents of the �le suh as the

names of the olumns. This an be done using the task dmlist.

1. Listing the bloks in a FITS �le.

dmlist has an option allowing you to ontrol whih information is printed; the highest level view, showing

the struture of the �le, is done by:

16 CHAPTER 3. THE DATA MODEL WALKTHROUGH

dmlist file.dat bloks

or

dmlist file.dat opt=bloks

In our test �le, this gives the result

--

Dataset: file.dat

--

Blok Name Type Dimensions

--

Blok 1: HDU0 Null

Blok 2: EVENTS Table 20 ols x 6933 rows

Blok 3: GTI Table 2 ols x 3 rows

This tells us the �le has 3 bloks, onsisting of a null blok followed by 2 tables, the �rst of whih has 20

olumns and 6933 rows.

In general, the CXC tools operate on a single `blok' (table or image) in the �le. If you want to look at the

header for a blok alled EVENTS quote the blok name in square brakets following the �lename:

dmlist "file.dat[events℄" header

Note that in a typial Unix shell (sh, ksh) you have to enlose the �lename string in quotes, beause

Unix wants to do something speial with the square brakets. Like all the CXC software, dmlist uses the

parameter �le interfae, whih allows you to be prompted for the parameters. If you use the interative

parameter prompting mehanism:

dmlist <hit return key>

infile (): file.dat[events℄

opt (): header

here, you don't have to use the quotation marks, sine the parameter �le interfae doesn't do anything

speial with the square brakets.

2. Inspeting the olumns of the EVENT blok.

Now we probably want to look at the EVENTS table to see what quantities we an �lter on. The `ols'

option in dmlist does this job:

unix: dmlist evt.fits ols outfile=tmp1

3.3. Introdution to the tools 17

This sends the output to the �le tmp1; it lists the olumns in the table and gives their unit, type, and valid

range. After the olumns, any oordinate systems on the olumns are shown. For instane, DM olumn 8 is

"sky(x,y)", a "vetor olumn" whih onsists of two FITS �le olumns x and y. The unit of "sky" is pixel;

it is a 4 byte real and runs from 0.5 to 8192.5. Note that in Chandra software, the enter of a pixel always

has pixel oordinates with no frational part, so the enter of the lower left pixel has pixel oordinates (1.0,

1.0) but the bottom left orner of that pixel, whih is the minimum value a oordinate an have, is always

(0.5,0.5). The notation at the bottome of the listing shows that olumn 8 has a oordinate system attahed:

the system EQPOS(RA,DEC) whih is symbolially de�ned in terms of sky(x,y) by an equation. Note that

the `TAN' in the equation refers to the tangent plane projetion operator and not the simple trigonometri

funtion. From this output you an easily read o� the the fat that the tangent point is at (4096.5,4096.5)

and has RA,DEC oordinates (23.4621,30.6603).

--

Columns for Table Blok EVENTS

--

ColNo Name Unit Type Range

1 time s Real8 83981689.6948460042: 84029906.7216549963 S/C TT orresponding to mid-exposure

2 d_id Int2 0:9 CCD reporting event

3 node_id Int2 0:3 CCD serial readout amplifier node

4 expno Int4 0:2147483647 Exposure number of CCD frame ontaining event

5 hip(hipx,hipy) pixel Int2 1:1024 Chip oords

6 tdet(tdetx,tdety) pixel Int2 1:8192 ACIS tiled detetor oordinates

7 det(detx,dety) pixel Real4 0.50: 8192.50 ACIS detetor oordinates

8 sky(x,y) pixel Real4 0.50: 8192.50 sky oordinates

9 phas[3,3℄ adu Int2(3x3) -4096:4095 array of pixel pulse heights

10 pha adu Int4 0:36855 total pulse height of event

11 energy eV Real4 0: 1000000.0 nominal energy of event (eV)

12 pi han Int4 1:1024 pulse invariant energy of event

13 fltgrade Int2 0:255 event grade, flight system

14 grade Int2 0:7 binned event grade

15 status[4℄ Bit(4) event status bits

ColNo Name

5: CPC(CPCX) = (+0)[mm℄ +(+0.0240)* (hip(hipx)-(+0.50))

(CPCY) (+0) (+0.0240) ((hipy) (+0.50))

7: MSC(THETA) = (+0)[deg℄ +TAN-P[(+0.000136667)* (det(detx)-(+4096.50))℄

(PHI) (+0) (+0.000136667) ((dety) (+4096.50))

8: EQPOS(RA) = (+23.4621)[deg℄ +TAN[(-0.000136667)* (sky(x)-(+4096.50))℄

(DEC) (+30.6603) (+0.000136667) ((y) (+4096.50))

3. Inspeting the event information and format of the EVENT blok.

Next we use the `data' option in dmlist to look at the atual table data. The `rows' parameter to dmlist an

be used to list only the �rst few rows.

unix: dmlist "evt.fits[events℄" data rows=1:4 outfile=tmp2

unix: at tmp2

18 CHAPTER 3. THE DATA MODEL WALKTHROUGH

--

Data for Table Blok EVENTS

--

ROW time d_id node_id expno hip(hipx,hipy) tdet(tdetx,tdety) det(detx,dety) ...

1 83982738.2467849255 7 1 3 (287,518) (4204,2220) (4166.1630859375, 4099.5781250) ...

2 83982738.2467849255 7 1 3 (318,558) (4235,2260) (4197.0996093750, 4059.6164550781) ...

3 83982741.4876454622 7 0 4 (49,347) (3966,2049) (3928.5751953125, 4270.468750) ...

4 83982741.4876454622 7 1 4 (357,483) (4274,2185) (4236.082031250, 4134.4916992188) ...

The output has been trunated sine the rows are very long.

4. Displaying spei� olumns. It is possible to speify whih olumns are to be output using a virtual

�le �lter, whih we'll talk a lot more about later. The virtual �le ommand below selets the olumns time,

and the x and y oordinates, again for an abbreviated list of rows. The table below shows the results.

unix: dmlist "evt.fits[events℄[ols time,sky℄" data rows=1:4

--

Data for Table Blok EVENTS

--

ROW time sky(x,y)

1 83982738.2467849255 (4092.8640136719, 4100.8286132812)

2 83982738.2467849255 (4042.3723144531, 4098.6845703125)

3 83982741.4876454622 (4369.5009765625, 4196.4272460938)

4 83982741.4876454622 (4080.7888183594, 4024.1035156250)

5. Filtering. It is also possible to �lter the �le in making the list. The following ommand uses the same

�le and olumn seletion but further selets only rows with a range of energy hannels (pha=200:300) and

a small part of the image (sky oordinates x between 3900 and 4500, and y between 3650 and 4250). Note

that I was lazy and omitted to say that I wanted the `[events℄' blok - the DM is smart enough to guess that

[events℄ is the most interesting blok in the �le and uses it if I don't speify one.

unix: dmlist "evt.fits[pha=200:300,x=3900:4500,y=3650:4250℄[ols time,sky℄" data rows=1:4

--

Data for Table Blok EVENTS

--

ROW time sky(x,y)

1 83982738.2467849255 (4092.8640136719, 4100.8286132812)

3.3. Introdution to the tools 19

2 83982738.2467849255 (4042.3723144531, 4098.6845703125)

3 83982754.3986033350 (4097.0952148438, 4097.5439453125)

4 83982757.6926859319 (4106.3100585938, 4098.53906250)

6. Inspeting the header.

It's often helpful to look at the header information in a �le. We distinguish two kinds of FITS header

keyword: strutural and true metadata. Strutural information that desribes how the �le is laid out is

intrinsi to the hoie of the FITS format and not to the sienti� data; an example is the BITPIX keyword

desribing the data type or the TTYPE13 keyword desribing the name of the 13th table olumn. We present

this information in a �le-format-independent way with the `ols' option of dmlist. In ontrast, true metadata

inlude information like the name of the instrument used, or the nominal roll angle of the observation.

(Tehnial note: the exat line between the two kinds of header info is, of ourse, a funtion of the abstrat

data model, and one ould imagine a more speialized astronomial model in whih the instrument name is

an intrinsi piee of information).

By default, the `keys' option to dmlist gives you only the true metadata. To see the COMMENT and

HISTORY information, use `header' instead of `keys'; to see the strutural FITS keys as well use `header,raw'.

We trunate the output from these examples to show the �rst few entries.

unix: dmlist "evt.fits[EVENTS℄" keys

--

Header keys for blok EVENTS

--

0001 CONTENT EVT1 String

0002 HDUCLASS OGIP String

0003 HDUCLAS1 EVENTS String

0004 HDUCLAS2 ALL String

0005 ORIGIN ASC String Soure of FITS file

0006 CREATOR ais_proess_events - Version CIAO 2.0b String tool that reated this out

0007 REVISION 1 Int4

0008 ASCDSVER CIAO 2.0alpha Thursday, Otober 26, 2000 String ASCDS version number

0009 CHECKSUM JgZBLZZBJfZBJZZB String HDU heksum updated 2001-10-15T15:11:13

0010 DATASUM 3225918943 String data unit heksum updated 2001-10-15T15:11:13

0011 DATE 2000-10-30T14:12:54 String Date and t

...

unix: dmlist "evt.fits[EVENTS℄" header

--

Header keys for blok EVENTS

--

-- COMMENT This FITS file may ontain long string keyword values that are

20 CHAPTER 3. THE DATA MODEL WALKTHROUGH

-- COMMENT ontinued over multiple keywords. The HEASARC onvention uses the &

-- COMMENT harater at the end of eah substring whih is then ontinued

-- COMMENT on the next keyword whih has the name CONTINUE.

0001 CONTENT EVT1 String

0002 HDUCLASS OGIP String

0003 HDUCLAS1 EVENTS String

0004 HDUCLAS2 ALL String

0005 ORIGIN ASC String Soure of FITS file

0006 CREATOR ais_proess_events - Version CIAO 2.0b String tool that reated this out

0007 REVISION 1 Int4

0008 ASCDSVER CIAO 2.0alpha Thursday, Otober 26, 2000 String ASCDS version number

0009 CHECKSUM JgZBLZZBJfZBJZZB String HDU heksum updated 2001-10-15T15:11:13

0010 DATASUM 3225918943 String data unit heksum updated 2001-10-15T15:11:13

0011 DATE 2000-10-30T14:12:54 String Date and time of file reation

...

unix: dmlist "evt.fits[EVENTS℄" header,raw

--

Raw Header keys for blok EVENTS

--

Key 1: C *XTENSION = BINTABLE / binary table extension

Key 2: I *BITPIX = 8 / 8-bit bytes

Key 3: I *NAXIS = 2 / 2-dimensional binary table

Key 4: I *NAXIS1 = 78 / width of table in bytes

Key 5: I *NAXIS2 = 30041 / number of rows in table

Key 6: I *PCOUNT = 0 / size of speial data area

Key 7: I *GCOUNT = 1 / one data group (required keyword)

Key 8: I *TFIELDS = 19 / number of fields in eah row

Key 9: C *EXTNAME = EVENTS / name of this binary table extension

Key 10: C *HDUNAME = EVENTS / ASCDM blok name

Key 11: C *TTYPE1 = time / S/C TT orresponding to mid-exposure

Key 12: C *TFORM1 = 1D / format of field

Key 13: C *TUNIT1 = s /

Key 14: C *TTYPE2 = d_id / CCD reporting event

Key 15: C *TFORM2 = 1I / format of field

Key 16: I *TLMIN2 = 0 /

Key 17: I *TLMAX2 = 9 /

Key 18: C *TTYPE3 = node_id / CCD serial readout amplifier node

Key 19: C *TFORM3 = 1I / format of field

Key 20: I *TLMIN3 = 0 /

Key 21: I *TLMAX3 = 3 /

...

Key 103: C CONTENT = EVT1 /

Key 104: C HDUCLASS = OGIP /

Key 105: C HDUCLAS1 = EVENTS /

Key 106: C HDUCLAS2 = ALL /

Key 107: C ORIGIN = ASC / Soure of FITS file

3.3. Introdution to the tools 21

Key 108: C CREATOR = ais_proess_events - Version CIAO 2.0b / tool that reated this out

Key 109: I REVISION = 1 /

Key 110: C ASCDSVER = CIAO 2.0alpha Thursday, Otober 26, 2000 / ASCDS version number

Key 111: C CHECKSUM = JgZBLZZBJfZBJZZB / HDU heksum updated 2001-10-15T15:11:13

Key 112: C DATASUM = 3225918943 / data unit heksum updated 2001-10-15T15:11:13

Key 113: C DATE = 2000-10-30T14:12:54 / Date and time of file reation

...

In this ase, strutural keys are marked with an asterisk.

Full disussion of syntax for dmlist is given in the ookbook (Setion ??).

3.3.2 dmopy

Several examples of the apabilities of dmopy are provided below. NOTE THAT THE bin DIRECTIVE

(IN DMCOPY AND OTHER CIAO TOOLS) CREATES AN IMAGE.

1. Making an image from a table. The example is an event table (in the [EVENTS℄ blok) reated in

a MARX simulation alled marx.�ts. This bins in both oordinates tdetx and tdety from 0.5 to 8192.5 in

steps of 8 (so that the pixel size is inreased by a fator of 8). More details about the �ltering and binning

seletion possibilities are given in Setion 3.5. This reates the output �le tx0.fits.

unix: dmopy "marx.fits[EVENTS℄[bin tdetx=0.5:8192.5:8,y=0.5:8192.5:8℄" tx0.fits

The bin ommand in dmopy reates an image format �le. In this example, the input �le has a size of 1.0

MB and the output �le, even at this redued resolution, is 2 MB; in X-ray data, most pixels are zero so the

image format is not an eÆient way to store things. To view the output you an use any FITS image viewer,

for example:

unix: ds9 tx0.fits &

The header of the image �le retains information on the original, unbinned oordinate system. Several other

examples of dmopy using the same MARX simulation are given below.

2. Extrating the enter of a FITS �le. The following ommand extrats the enter of the image

marxn.�ts at half resolution. Again, the [EVENTS℄ blok from the MARX simulation is used. In this ase,

the user is prompted for the parameters.

unix: dmopy

Input dataset/blok speifiation (marx.fits[EVENTS℄):

marx.fits[EVENTS℄[bin tdetx=4000:4200:2,tdety=4050:4250:2℄

Output dataset name (tx0.fits): tx1.fits

3. Filtering a FITS �le both spatially and spetrally. The following ommand will extrat the entral

part of the image and a restrited set of energies. The event �le is turned into a 3-dimensional image with

pixels bloked by a fator of 10 in tdetx and tdety and a fator of 100 in pha.

22 CHAPTER 3. THE DATA MODEL WALKTHROUGH

unix: dmopy "marx.fits[EVENTS℄[bin tdetx=3900:4500:10,tdety=3650:4250:10,

pha=200:500:100℄" tx6.fits

The output �le is tx6.�ts, a 40 KB �le.

4. Filtering on spae while binning on energy and time. The following ommand reates a �le

(tx3.�ts) whih an be used to examine the spetrum as a funtion of time. The spetrum is reated from

the region in detetor oordinates tdetx between 4100 and 4300 and tdety between 3850 and 4050 with the

default pixel size. The time interval 47144000 to 47148000 s is binned into steps of 100 s, and the approximate

energy is binned into 100 eV bins. Displaying the resulting image reveals times of high bakground whih

are easily piked out in the energy-resolved light urve.

unix: dmopy "evt.fits[x=3900:4200,y=3900:4200℄[bin time=83981689:84029906:100,energy=300:10000:100℄" te.fits

3.3.3 dmextrat

dmextrat is a program whih does a similar binning operation to that available in dmopy, exept that

the resulting histogram is stored as a table rather than an image.

The default mode of dmextrat (`opt=pha1') makes a HEASARC-ompatible PHA spetral �le, binning on

pulse height. Its generi mode (`opt=generi') allows you to bin on any one-dimensional quantity (e.g. time,

to make a light urve) or two-dimensional set of regions (e.g. a set of annuli, to make a radial pro�le). The

output is a histogram of the data, together with histograms of ounting errors and ounting rates.

As an example, the following ommand will start with the event list evt.fits and reate the �le soure.pha

from a limited spatial region (sky oordinates within 20 pixels of a spei�ed pixel position) using pi (pulse

invariant bin) energy hannels from 1 to 1024, binned in steps of 2 hannels.

unix: dmextrat "evt.fits[sky=irle(4096,4096,20)℄[bin pi=1:1024:2℄" soure.pha

The struture of the �le an be seen with dmlist:

unix: dmlist soure.pha ols

--

Columns for Table Blok SPECTRUM

--

ColNo Name Unit Type Range

1 CHANNEL hannel Int4 1:512 PI

2 PI han Real8 1.0: 1024.0 pulse invariant energy of event

3 COUNTS ount Int4 - Counts

4 STAT_ERR ount Real8 -Inf:+Inf Statistial error

5 COUNT_RATE ount/s Real8 -Inf:+Inf Rate

3.3. Introdution to the tools 23

3.3.4 Other simple DM tools

dmappend

dmappend is a simple tool whih stiks a single blok (table or image) from one �le onto the end of another.

dmappend "psp.fits[stdevt℄" marx.fits

This opies the blok STDEVT from psp.�ts to the end of the preexisting �le marx.�ts.

dmmerge

dmmerge merges two ompatible tables. The intent is to allow the user to merge two event lists whih are

segments of a single observation. Note that we don't yet have a tool to (validly) merge event lists whih have

di�erent nominal pointing diretions. The reprojet events tool (see `ahelp reprojet events) an do this.

dmmerge �merge.lis olumnList="x,y,time" outfile=merge.out

where merge.lis is an asii �le with a list of input bloks or �lenames (one per line). Eah blok will be

opened with the given olumn list (it just reates a normal data model open with \�lename[ols x,y,time℄");

any �le whih doesn't have one of the requested olumns will be skipped. The output �le will have a single

blok, a table whose rows are the rows of the input �les appended to eah other. No sorting of the data is

performed, so all the rows of the seond �le will ome after all the rows of the �rst �le.

The triky part is merging the header keywords. dmmerge uses a lookup on�guration �le to selet speial

behaviour for partiular header keywords. The on�guration �le provided with the present release is used in

Chandra pipeline proessing to fore a spei� header style. In later releases we will also provide a simpler

lookup �le whih won't be Chandra-spei�.

The default value of the lookupTab parameter is dmmerge header lookup.txt in the $ASCDS CALIB dire-

tory.

The interfae and behaviour of this tool is likely to hange in future releases, so be areful about using it in

sripts et.

dmhedit

dmhedit is a program to edit �le headers. It's similar in spirit to the FMODHEAD ftool, but operates at

a higher level of abstration. Users are warned that the implementation in the urrent release has some

problems, partiularly with string keywords and with editing existing keys.

The input dataset/blok spei�ation an either be a single �le (dmtest.�ts[stdevt℄) or a stak of input �les

(�instak).

24 CHAPTER 3. THE DATA MODEL WALKTHROUGH

The ASCII edit list �le an ontain two kinds of lines: (1) ontrol lines, beginning with # (2) edit lines The

ontrol lines speify what to do with eah of the edit lines until the next ontrol line. The valid ontrol lines

are:

#add, #delete,

These lines indiate that the subsequent edit lines are keywords to be added at the end of the blok header,

deleted, or added immediately following the spei�ed existing key. Any other ontrol line is treated as a

omment. Eah edit line has the form (free format):

KEYNAME = full value

and full value is made up of: value, or value / omment, or value / [unit℄, or value / [unit℄ omment.

If the value is a string value, it should be inluded in single quotes.

An example ommand using dmhedit would be:

unix: dmhedit psp.fits filelist=edit.lis

where edit.lis is an edit list �le.

An example of an edit list �le is:

#add

LIVETIME = 142.3 / [s℄ Live time

INSTRUME = 'HRC-S'

#delete

PHAMAX

#add

HDUCLAS3 = 'SPECIAL'

HDUVER = 1.2 / HDU revision

COMMENT HDUCLAS3 is a speial keyword from Goddard

COMMENT whose value is spurious here.

HISTORY HDUCLAS3 added by header edit, while HDUVER

HISTORY is a made up keyword.

#add

GAUSS.POWER = -1.8 / Power law index

dmhedit also has a ommand line `single' mode to edit a single keyword:

dmhedit psp.fits filelist=none operation=add key=INSTRUME value='HRC-S'

dmregrid

dmregrid regrids a stak of (2-dimensional) images, by applying binning, rotation and o�set to eah image.

The relevant parameters are

3.3. Introdution to the tools 25

in�le The input image or image stak.

out�le The �nal regridded output image.

bin X and Y binning spei�ation, given in the format minx:maxx:binx,miny:maxy:biny. Can be spei�ed

as an input stak.

rotangle Rotation angle in degrees, measured ounter-lokwise. Can be spei�ed as a stak.

rotxenter X oordinate in pixels of enter of rotation. Can be spei�ed as a stak.

rotyenter Y oordinate in pixels of enter of rotation. Can be spei�ed as a stak.

xo�set X o�set to be applied to regridded image. Can be spei�ed as a stak.

yo�set Y o�set to be applied to regridded image. Can be spei�ed as a stak.

npts Integer between 0 and 999, determines sampling level.

Input staks are ASCII �les with �elds delimited by omma or spae.

Example of a ommand using stak input:

unix: dmregrid infile=�inlist outfile=newimage.fits bin=�binlist rotangle=�rotlist

rotxenter=�xrotlist rotyenter=�yrotlist xoffset=�xofflist yoffset=�yofflist npts=0

lobber=yes verbose=1

All of the above parameters whih an be spei�ed as input staks an also be spei�ed as single values, in

whih ase the same value will be applied to all input images. If there is a stak of input images, the �nal

output image will be the sum of the individual regridded images. Physial and world oordinate systems are

attahed to the output image.

If npts=0, then for eah pixel overlapping a regridded pixel, a polygon is reated that is the intersetion of

the two pixels. The area of this polygon is alulated and is used to weight the number of ounts within the

unit pixel to be alloated to the regridded pixel. If npts is given a positive value, an approximate regridding

algorithm is used in whih npts�npts uniformly spaed points within a regridded pixel are sampled. The

appropriate fration of the number of ounts within the unit pixel enompassing eah sampling point is then

alloated to the regridded pixel. The approximate algorithm is about an order of magnitude faster than the

exat algorithm.

By speifying binning and setting all other parameters to zero, it is possible to have dmregrid do dm-

opy's task (whih dmopy annot yet do) of binning an image. Setting npts to something other than zero

signi�antly speeds up the proessing. Thus, for example, to bin a 512x512 image by 2, one ould say

unix: dmregrid infile=fullresimage.fits outfile=binimage.fits bin=1:512:2,1:512:2,

rotangle=0 rotxenter=0 rotyenter=0 xoffset=0 yoffset=0 npts=3

The reason for expliitly setting some parameters to zero rather than just omitting them from the ommand,

is that the tool will look up the values of all omitted parameters in the parameter �le and use those values.

That is, it will use the value that was used the last time that parameter was expliitly set. See setion ??

for some more information about parameter �les.

Note

26 CHAPTER 3. THE DATA MODEL WALKTHROUGH

dmregrid in its urrent version annot handle an input binning spei�ation stak in whih a subsequent

item results in a greater number of output pixels than the �rst item. This bug will be �xed for the next

release or path.

dmimgal

dmimgal performs basi arithmeti on images. It is a tool still in a preliminary stage. Its urrent abilities

inlude adding, subtrating, mulitplying, dividing and omparing two images, with optional `weights' on the

input images. Operations on single images are not possible.

The syntax is

dmimgal image1.fits image2.fits outimage.fits op weight=<onstant> weight2=<onstant>

where op is one of: add, mul, sub, div, tst. If op equals `tst' then the output image should be spei�ed to be

\none". dmimgal only tests whether the images are numerially idential. Other tests are not yet possible.

A typial ommand would be

unix: dmimgal ais1.fits exposure.fits normal.fits div

whih divides the ais image by the exposure map and puts the result into the �le normal.�ts,

or

unix: dmimgal ais1.fits ais2.fits sum.fits add weight=2.5 weight2=1.414

whih is equivalent to (2:5� ais1:�ts) + (1:414� ais2:�ts).

dmstat

dmstat omputes standard statistis for a table or an image. For tables it outputs the minimum value, the

maximum value, the standard deviation, the number of good values and the sum of the entire olumn. For

an image it outputs the minimum and maximum values, the standard deviation, the sum, and the entroid.

The syntax is

dmstat filename

where �lename is a Data Model virtual �le spei�ation. That is, you an �lter the input to the tool. Sample

ommands and the orresponding output are shown below.

To get information on the time and pha ols:

unix: dmstat "file.fits[ols time,pha℄"

time[s℄

min: 53161434.770097

3.4. Design Overview 27

max: 53174191.333063

mean: 53167802.580212

sig: 3692.285028

total: 2097257140579.023438

good: 39446.000000

nulls: 0

pha[adu℄

min: 43.000000

max: 3747.000000

mean: 860.133651

sig: 1046.696570

total: 33928832.000000

good: 39446.000000

nulls: 0

To get statistis on an image minus a region:

unix: dmstat "image.fits[\!irle(50,50,10)℄"

PRIMARY(AXIS1, AXIS2)

min: -19.777779

max: 5.555553

ntrd: (168.334862 ,146.626860)

std: (75.583215 ,73.827393)

sum: 10806.778002

unix: dmstat "file.fits[ols sky℄" entroid=yes sigma=yes

sky(x, y)[pixel℄

min: (3900.00513 3900.00854)

max: (4411.99805 4411.96045)

mean: (4125.71523 4117.71857)

sigma: (113.777582 110.039969)

sum: (123940611 123700384)

good: (30041 30041)

null: (0 0)

There is a bug in this version of dmstat that auses inorret extration of WCS olumn names, leading to

the \EQPOS" above instead of RA and DEC.

3.4 Design Overview

We have aimed to design a high level interfae to the data whih doesn't depend on the details of the exat

�le format being used. This leads to the idea of a `data model', in other words an abstrat model of the data

28 CHAPTER 3. THE DATA MODEL WALKTHROUGH

�le that gives a ommon language whih an apply to di�erent �le formats. This is possible beause all of

the data we use in X-ray astronomy data analysis is stored in a few ommon (albeit ompliated) strutures,

so that although data produts like event lists, soure lists, and exposure maps are all quite di�erent from

the astronomer's point of view, they atually have a lot in ommon in their underlying struture. The data

model provides a way of exploiting these similarities and desribing the di�erenes. De�ning the data model

in a way independent of the �le format means that we an operate transparently on both FITS and IRAF

format data �les (and later an add other formats without hanging the interfae), and we an deal with

high level strutures like oordinate systems without the user having to know the latest FITS onventions

for storing that information.

Although our jargon is a little di�erent, in pratie the interfae is very similar to SAO's IRAF x-ray pakage,

PROS, with whih users of ROSAT data will be familiar. We've upgraded the interfae to make it muh

more general, and the insides are ompletely redone so that it will work on FITS �les as well as PROS style

QPOE and IMH �les. At the lowest level, our software alls Bill Pene's CFITSIO library for its FITS

aess, and Doug Tody's IRAF system libraries to read IRAF format �les. However, the software does not

require an IRAF installation unless you want to run the programs as IRAF tasks.

The goals of the CXCDM library are:

� to provide an easy way to �lter and bin data �les at runtime, extending the funtionality provided in

the PROS system. The user an speify a �ltered or transformed version of their input �le, without

the individual appliation having to expliitly perform �ltering.

� to provide a ommon view of multiple �le formats, inluding FITS, IRAF/QPOE, and ASCII �les,

and isolate the details of those formats from the alling program. This data aess layer for all our

software also allows us to isolate all of the format-spei� keyword onventions, keeping them up to

date without having to rewrite eah individual appliation program.

� to provide a programming interfae to the data whih is higher level than basi I/O libraries like

CFITSIO, but is still generi.

� to support enoding a greater level of self-desription in the data �les while retaining bak ompatibility

with existing onventions.

To the user, that �rst item is the main one of interest, although users who like writing their own analysis ode

will want to take a look at our programmers' guide whih addresses the seond item. For a more detailed

look at the ideas behind the CXCDM, refer to our design overview doument.

3.5 Filtering

Filtering �les (i.e. seleting subsets of a data �le by spatial position, energy and/or time) is one of the most

important features of CXCDM.

3.5.1 Syntax

The full syntax of a data model �lter is a �lename followed by a series of optional quali�ers in square

parentheses:

3.5. Filtering 29

filename[blok℄[filter℄[olumns℄[binning℄

The blok quali�er spei�es whih setion of the �le to use; in FITS, it spei�es an HDU (Header Data

Unit). The FTOOLS syntax of [n℄, where n is the HDU number ounting from 1, is aepted, but the name

(EXTNAME/HDUNAME value) of the HDU is equally valid and in many ases will be more intuitive. If

the blok quali�er is omitted, the �rst `interesting' blok will be used - the �rst FITS HDU for whih NAXIS

is nonzero, exluding GTI and WMAP extensions.

The �lter quali�er spei�es whih rows of a table or pixels of an image to use, by �ltering on the values

of olumns or axes. A nontrivial �lter example is [pha=3:20,time=100:200,250:300,450:500,d id=3℄. The

�lter on eah variable is expressed as a series of aeptable ranges. Logial operators (&, <, et) may also

be used, as desribed in the detailed DM virtual �le doumentation.

The olumns quali�er spei�es whih olumns from a table should be used; it annot be used with images.

The binning quali�er makes an image from a table, binning on any olletion of olumns, optionally

speifying the ranges and binning fators:

[bin x=100:612:4,y=512:1024:4,time=8441014.3:8441420.8:20.2℄

spei�es making a 3-dimensional x,y,time ube in whih eah x,y pixel is 4 input pixels, and eah time pixel is

20.2 seonds. The �rst two oordinates de�ne the axes of the image; (in this ase x,y but ould be detx,dety

or time,pha or ...)

Note

When speifying a virtual �le on the ommand line, it is neessary to enlose the entire �le spei�ation in

double quotes, e.g.

unix: dmopy "file.fits[bin x=100:612:4,y=512:1024:4℄" image.fits

beause the Unix shell will otherwise attempt to parse the ommand line instead of passing the entire

argument to the DM tool. If you hoose to start the tool without a �le spei�ation and be prompted for

parameter values, then you should not use the quotes.

unix: dmopy

Input dataset/blok speifiation (): file.fits[bin x=100:612:4,y=512:1024:4℄

Output dataset name (): image.fits

Cautions

The order of the syntax is very important. For instane, you an use dmopy to reate a �ltered image

evt1.out from the event list �le Soures_evt.fits with the ommand below. This will produe an image

ontaining the data from the region x 16370 to 16390 and y 16370 to 16390 imbedded in a larger region from

x 16350 to 16410 and from y 16350 to 16410 ontaining no ounts.

unix: dmopy "Soures_evt.fits[x=16370:16390,y=16370:16390℄[bin x=16350:16410,

y=16350:16410℄" evt1.out

Reversing the order of the quali�ers is not allowed:

30 CHAPTER 3. THE DATA MODEL WALKTHROUGH

unix: dmopy "Soures_evt.fits[bin x=16350:16410,y=16350:16410℄

[x=16370:16390,y=16370:16390℄" evt2.out

If the previous ommand is broken down into two ommands like this,

unix: dmopy "Soures_evt.fits[bin x=16350:16410,y=16350:16410℄" tmp1.out

unix: dmopy "tmp1.out[25:45,25:45℄" tmp2.out

the result is di�erent from the �rst example. First a �le tmp1.out is reated whih is an image ontaining

the events from x 16350 to 16410 and from y 16350 to 16410. This image is further �ltered so that the

output �le tmp2 is only the smaller image ontaining x from 25 to 45 and y from 25 to 45 (in the oordinate

system of tmp1.out); not a small image imbedded in a larger blank image (above: evt1.out).

3.5.2 Virtual Files

A powerful apability of the CXCDM is being able to use a �ltered version of a �le without atually writing

it to disk. That is, in any program using the CXCDM interfae, you an pass a `virtual �le' where an input

�le is expeted. The virtual �le is impliitly reated from a true disk �le by �ltering or binning, but does

not get reated on disk or even formatted into a Unix pipe. Instead, I/O alls in the program return reords

of the virtual �le by internally aessing the atual disk �le and �guring out whih data passes the �lter.

For instane, for a soure detetion program CELLDETECT you have an event list from a full resolution

32k square HRC image. In this example we use the event list for the image Soures_evt.fits. The output

�le ontaining the soures found is alled Soures_evt_sr.fits.

unix: elldetet infile="Soures_evt.fits" outfile="Soures_evt_sr.fits"

However, beause of spae or run-time limitations, you want to use CELLDETECT to �nd the soures in

only part of the image. Instead of running CELLDETECT on the full image, you an pass it a subset of

that �le ontaining only x values in a limited range, without �rst reating any intermediate disk �le. The

program sees the `virtual' �le you have spei�ed. In this ase, an image is reated from the subset of the

event �le for X between 16350 and 16420 and Y in the same range, binned in steps of 1.

unix: elldetet infile="Soures_evt.fits[bin X=16350:16420:1,Y=16350:16420:1℄"

outfile="Soures_evt_sr.fits"

To examine the output �le to see what soures were found, dmlist an be used. First, inspet the bloks in

the output �le, whih shows that there are two bloks in the �le, with the soure list being the seond.

unix: dmlist "Soures_evt_sr.fits" bloks

--

3.5. Filtering 31

Dataset: Soures_evt_sr.fits

--

Blok Name Type Dimensions

--

Blok 1: HDU0 Null

Blok 2: SRCLIST Table 26 ols x 1 rows

The next step is to look at the result in the soure list (blok 2). In this ase the RA, De, soure ounts and

soure ount error are requested for the soures in the simulated image (in whih the one reovered soure

is very lose to the enter of the image).

unix: dmlist "Soures_evt_sr.fits[SRCLIST℄[ols ra,de,net_ounts,net_ounts_err℄" data

--

Blok 2: SRCLIST Table 4 ols x 1 rows

--

--

Data for Table Blok SRCLIST

--

ROW RA DEC NET_COUNTS NET_COUNTS_ERR

1 9.47086E-06 -1.24421E-05 186.0 15.6040

As another example, you an reate a virtual image from the event list, �ltering both spatially and in time.

The spatial subspae is the same as above, but the time range is from 37277062.1 to 37277062.2 seonds.

unix: elldetet infile="Soures_evt.fits[events℄[time=37277062.1:37277062.2℄

[bin X=16350:16420:1,Y=16350:16420:1℄" outfile="Soures_evt_sr.fits"

Note that in this ase, the order in the syntax is important. This ommand �rst goes to the events blok,

next �lters the data in time, and then makes an image by binning over the requested X and Y region. You

an't �lter after binning in the same operation. In addition, one the binning is done, the data no longer

ontains the time information.

The CXCDM supports the full spatial `region' �ltering used in PROS:

unix: elldetet infile="evt.fits[events℄[(ra,de)=irle(14:07:23 -00:14:23 3')℄[bin x,y℄"

outfile="result.fits"

32 CHAPTER 3. THE DATA MODEL WALKTHROUGH

This selets only photons whose elestial positions lie within 3 armin of the quoted oordinates.

Cautions

Like many powerful apabities, there are things that the user must be areful of in using virtual �les.

1. If you provide this �le spei�ation to a tool:

"Soures_evt.fits[events℄[bin X=10001:12048:1,Y=10001:12048:1℄"

this reates a 2048x2048 image.

However, onsider the spei�ation:

"Soures_evt.fits[events℄[X=10001:12048,Y=10001:12048℄[bin x,y℄"

This does something slightly di�erent. The �le Soures_evt.fits ontains the event list from a 32kx32k

simulated HRC image. The spei�ation selets events only in the limited range of x and y, but doesn't

restrit the overall size of the implied image. The bin ommand then reates a 32kx32k image with zeroes

everywhere exept in the spei�ed x and y range. This is probably not what the user wanted.

2. The �lters are reorded in the �le's `data subspae'. Use `dmlist filename subspae' to see how the

�le has been �ltered.

3.6 Syntax summary

The syntax is largely inspired by the IRAF/PROS �ltering, regions, image setion, and bloking apabil-

ity. We have added intensity �ltering from XSELECT and relational �ltering and olumn seletion from

ETOOLS. From MIDAS we plan to add �lter staking apabilities but that isn't in the urrent version. We

retain as muh as possible of the PROS �ltering syntax to keep it familiar to users of that system. We have

integrated the regions syntax with it, and added new apabilities in a natural way. Keeping it ompat was

an important goal.

The syntax onsists of a string with quali�ers surrounded by square parentheses, (Setion 3.5.1) thus:

a[b℄[℄[d℄[e℄

Eah group within square parentheses has a di�erent meaning. The parentheses minimize the risk of an

unintended string with a single mistype and make the ommand more readable,

Dataset names are ase sensitive. All other names are ase-insensitive for mathing, but ase-sensitive for

output. (In other words, if you ask to read a quantity evENts, the software will suessfully �nd the table

EVENTS; but if you ask for an output table to be named evENts, that is exatly what it will be named.)

3.8. Data subspae 33

3.7 Multiple File Format Support

DM-aware programs will read any of the supported formats automatially, �guring out whih format is being

used by looking at the �le. The only restrition is that the IRAF formats suh as QPOE and IMH must have

�lenames whih end with the appropriate extensions, .qp and .imh, sine the underlying IRAF subroutines

require this. By default, output �les will use the same format as the input �les, but that an be overridden

by the use of the `format' parameter provided in eah CXCDM tool.

Although FITS �les will be used for all arhival and user data distribution purposes, for run time analysis,

and for ompatibility for users working in the IRAF environment, our software will support the use of QPOE

event �les and IRAF IMH images. The `data model' knows whih strutures in QPOE and FITS �les are

equivalent. The various supported �le formats are alled `kernels'. The ability to use one set of tools to

read multiple formats removes the need for onversion tools and greatly improves interoperability. The gain

is also a snag: a given high level onept may map to two quite di�erent representations in the data �le.

For example, Good Time Intervals (GTIs), whih represent the times on whih the data has been �ltered,

are stored in binary table extensions in FITS �les. In the QPOE �les the same information is stored in the

QPOE header rather than in a separate table. To allow a program to handle either FITS or QPOE, the

GTI's are handled as part of the `data subspae', disussed below. To the user, the main e�et is that a

given events table `knows' about a GTI whih `belongs' to it, and operations opying or �ltering the events

table will automatially opy and update the GTI.

In the table below, we give some examples of onepts used in the CXCDM and how they map into the FITS

and QPOE formats.

Table 3.1: Examples of CXCDM abstrations

CXCDM abstration FITS QPOE/IMH

Dataset File, may have many HDUs 1 or more �les

(Header Data Units)

Blok HDU Single �le

Table BINTABLE QPOE

Image IMAGE IMH

Column desriptor TTYPE et QPOE struture

TIME subspae GTI HDU deÆlt keyword

Other subspae keywords keywords

Coord desriptor TCRVL keys Opaque binary MWCS

The third kernel we expet to support is an ASCII kernel, whih we antiipate will be most useful for

importing user tabular data. The exat format has not been �nalized, but will probably involve optional

free-format FITS-style header keywords and will also support the `rdb' Unix database format.

3.8 Data subspae

Another new onept in the CXCDM is the `data subspae'. We are already used to the idea that it's

important to remember how the data have been �ltered. GTIs, PHA hannel ranges, and SAOIMAGE

region �les are used to store this information. We think it's helpful to have a systemati approah. The

CXCDM data subspae is the list of `how this data has been seleted'. This list is updated as you further

34 CHAPTER 3. THE DATA MODEL WALKTHROUGH

�lter the �le, so that programs whih make use of the data subspae an �gure out whih alibrations to

apply.

The simplest data subspae �lter is the logial AND of the restritions on several olumns, as in all the

�ltering examples given above.

More omplex logial expressions, like `this data was taken when (X1=A AND X2=B) OR (X1=C AND

X2=D)' may be rare in pratie, but we have suh a ase with Chandra's ACIS CCD imager, where we

want to make a single event list for the multiple hips, but due to dropouts and saturation e�ets the GTIs

may be di�erent for eah hip. The ability to use OR in suh �lters is also useful for ombining data from

di�erent missions.

3.9 Header keys

Users sometimes have to look diretly at the header information in data �les. In this setion we desribe

some of the speial keywords that CXCDM writes to FITS �les; other formats are handled in a similar way.

A full desription of our FITS onventions is given in a separate doument.

� Grouped (`vetor') olumns: we support giving a single name to a related group of olumns, for instane

an X,Y position pair, a (start,stop) time bin, or a (value,unertainty) pair. The MTYPEn, MFORMn,

and METYPn keywords are used to do this.

� Long keyword names: we fake out the FITS restrition that keyword names an only have 8 haraters

by using pairs of keywords DTYPEn and DVALn, one to hold the name and the other to hold the value.

DFORMn and DUNITn keywords an also be used to speify data type and unit. Of ourse, sine

all existing keywords are 8 haraters or less, they don't use this onvention and ompatibility with

existing programs is �ne - they just won't reognize the new keywords, whih they're not expeting

anyhow.

� We reord the data subspae in a blok with the keywords DSTYPn, DSVALn, and DSREFn.

