
CXC-DM-010

CXC Data Model

Chandra Data Model Manual, Part 1:

User Introdu
tion to

Filtering and Binning in CIAO

CIAO 2.2 Edition

Chandra X-ray Center

O
tober 22, 2001

2

Contents

I Introdu
tion to the Data Model 5

1 What is the Data Model? 7

1.1 General Des
ription . 7

1.2 Organization of this Guide . 7

2 Getting Started 9

2.1 Brief Overview . 9

2.2 System Setup . 10

2.3 Data Preparation . 10

2.4 Running Data Model Tools . 10

2.4.1 The Command-Line Version . 10

2.4.2 GUI
apabilities . 11

2.4.3 Getting Help . 11

3 The Data Model Walkthrough 13

3.1 Manipulating Data . 13

3.2 Syntax: Qui
k Introdu
tion . 14

3.2.1 Basi
 DM syntax . 14

3.2.2 Multiple input and output �les . 14

3.3 Introdu
tion to the tools . 15

3

4 CONTENTS

3.3.1 dmlist . 15

3.3.2 dm
opy . 21

3.3.3 dmextra
t . 22

3.3.4 Other simple DM tools . 23

dmappend . 23

dmmerge . 23

dmhedit . 23

dmregrid . 24

dmimg
al
 . 26

dmstat . 26

3.4 Design Overview . 27

3.5 Filtering . 28

3.5.1 Syntax . 28

3.5.2 Virtual Files . 30

3.6 Syntax summary . 32

3.7 Multiple File Format Support . 33

3.8 Data subspa
e . 33

3.9 Header keys . 34

Part I

Introdu
tion to the Data Model

5

Chapter 1

What is the Data Model?

1.1 General Des
ription

This manual des
ribes the �ltering and binning language used throughout the CIAO data analysis pa
kage,

and some of the basi
 tools used to do simple analysis tasks. The name \Data Model" re
e
ts the intent

that there be a high level interfa
e whi
h
an be used on data �les of di�erent formats: we have a single

abstra
t des
ription (`model') that en
ompasses all the data �les we use. Although the event list, sour
e

lists and exposure maps produ
ed as output produ
ts from X-ray observations are quite di�erent in their

information
ontent, they a
tually have a lot in
ommon in their underlying stru
ture.

An important aspe
t of the Data Model is that any program that asks for a data �le name as input will

a

ept a `virtual �le' string whi
h will
ause the program to see a �ltered version of the �le in question.

The underlying �le
an be any of the formats supported by our `data model' subroutine library,
urrently

in
luding FITS, and IRAF QPOE and IMH �les.

A
ommon use of the `virtual �le' syntax is to
reate on disk a �ltered version of the input �le. The dm
opy

program is used to do this.

1.2 Organization of this Guide

This guide is divided into three parts: (I) an Introdu
tion, (II) a guide to the DM tools, and (III) the

Referen
e Manual. Part I
ontains information to assist you with getting started, a summary of the available

ommands, and a simple walkthrough
hapter. Part II in
ludes a set of detailed examples. Part III
ontains

more detailed referen
e material that will be useful on
e you have be
ome familiar with the basi
s of using

CIAO. You should also refer to the online threads at as
.harvard.edu/
iao/do
uments threads.html.

7

8 CHAPTER 1. WHAT IS THE DATA MODEL?

Chapter 2

Getting Started

2.1 Brief Overview

The
ore utility tools do
umented in this manual are:

dmlist: to examine the
ontents of data �les

dm
opy: to �lter or bin images or tables

dmextra
t: to
reate PHA tables

In addition, there are a number of more spe
ialized tools whi
h are do
umented in the online `ahelp' and

threads.

dmhedit allows you to edit the header keys in a �le.

dmt
al
 allows you to generate new table
olumns as arithmeti

ombinations of old ones.

dmjoin interpolates one table on the grid provided by another.

dmmerge merges two event lists whi
h have the same pointing dire
tion and roll angle (use reproje
t -

events to align two event lists with di�erent pointings).

dmgti: to make a time �lter from a time ordered housekeeping �le by spe
ifying
onstraints.

dmregrid regrids an image, s
aling and rotating it.

dmsort sorts a table.

dmstat gives basi
 statisti
s on a table.

dmimg
al
 allows you to add, subtra
t, multiply, divide and
ompare two images.

9

10 CHAPTER 2. GETTING STARTED

dm
oords
onverts between Chandra
oordinate systems.

dmmakepar makes a parameter �le from a table header; this is o

asionally needed to regenerate an

`obs.par' �le from the event list, for pipeline tools whi
h need su
h an input.

dmappend is a simple tool whi
h adds a single blo
k (table or image) from one �le onto the end of another.

2.2 System Setup

Users are en
ouraged to read about the setup of the CIAO software and parameter �les as des
ribed in the

Beginner's Guide.

2.3 Data Preparation

One purpose of the data model is to handle many �le formats avoiding the need for any spe
ial �le preparation.

The
urrent release handles FITS, IRAF QPOE and IMH �les.

2.4 Running Data Model Tools

2.4.1 The Command-Line Version

After you have initialized CIAO, the data model tools are

available from the unix prompt on the
ommand line. Some sample data �les may be downloaded from

http://hea-www.harvard.edu/ j
m/as
/dm/examples.tar

A trivial example: The �le evt.fits is an event list in FITS format. FITS �les
onsist of a number of

se
tions, and in this parti
ular
ase one of the se
tions is
alled EVENTS,
ontaining a list of photons. The

ommand

unix: dm
opy "evt.fits[EVENTS℄"
opy.fits

generates a �le
opy.fits
ontaining the event list data and its asso
iated header.

The DM also
onsiders
ertain other parts of the �le to `belong' to the events se
tion: the `good time

intervals' are stored in a separate se
tion but are automati
ally
opied along with the events data, be
ause

in the abstra
t model that information is part of the 'blo
k' of data that is being
opied. In
ontrast, it is

possible to append unrelated data se
tions to evt.�ts, but these will not in general be
opied (dm
opy has

a parameter 'option=all' whi
h will for
e all the se
tions to be
opied).

As usual in Unix, the user must have write permission in the
urrent dire
tory, and as for most CXC tools,

if the output �le exists before running dm
opy, you must set the `
lobber' parameter to `yes' to overwrite

it.

2.4. Running Data Model Tools 11

2.4.2 GUI
apabilities

Some of the
apabilities of the Data Model tools are available in GUIs
alled FirstLook and FilterWindow.

Please refer to the Beginner's Guide for information on those tools.

2.4.3 Getting Help

The help �les for a given task
an be displayed using the ahelp
ommand, for example:

unix: ahelp dm
opy

The amount of information and format
an be spe
i�ed using options with ahelp:

-l for a more detailed des
ription. This is the default.

-s for a short des
ription

-w to display the full help �le in HTML format via a browser.

The detailed syntax
an be found with 'ahelp dm' whi
h points the user to a set of help �les su
h as 'ahelp

dmbinning'; these �les
over a lot of the same ground as this manual.

12 CHAPTER 2. GETTING STARTED

Chapter 3

The Data Model Walkthrough

3.1 Manipulating Data

The CXC analysis and pro
essing software is built on a
ommon interfa
e library
alled the CXC Data Model

(CXCDM or just DM), whi
h provides users with a powerful, built-in data sele
tion and binning
apability.

The library is optimized for use with X-ray astronomy data analysis, but is quite general and may be used

for other purposes whi
h involve manipulating tabular and image data with lots of asso
iated meta data.

The user doesn't need to know the details of our abstra
t software model, but will need to pi
k up some of

the basi
 ideas to get full use out of the software. In parti
ular, be
ause our software supports a number of

�le formats, not just FITS, we
an't use spe
i�
ally FITS terminology (HDUs, binary table extensions, and

so on), sin
e that won't be relevant when other formats are in use.

The CXCDM will work with PROS style QPOE �les as well as FITS �les, and its programs will work both

as IRAF tasks and on the
ommand line like FTOOLS. Our hope is that the learning
urve will be short

for both PROS and FTOOLS users. CXC analysis tools use the familiar parameter interfa
e used by both

PROS and FTOOLS; that parameter interfa
e is separate from the CXCDM, and will be
overed in another

do
ument.

Unfortunately, there are some remaining
ompatibility problems with PROS, whi
h was written to deal with

ROSAT data and
annot handle all aspe
ts of Chandra data; however, the timing tools in parti
ular have

been su

essfully used with Chandra �les.

This
hapter introdu
es you to the Data Model on two di�erent levels. First spe
i�
 examples are provided

of the usage of the tools. Following that is a dis
ussion of its design, and an introdu
tion to its features,

in
luding
omparison with FITS and QPOE terminology.

13

14 CHAPTER 3. THE DATA MODEL WALKTHROUGH

3.2 Syntax: Qui
k Introdu
tion

3.2.1 Basi
 DM syntax

The CXCDM
omes with a set of basi
 �le manipulation tools, of whi
h the most important is dm
opy. This

tool, in the spirit of Unix's
at, performs a variety of important tasks: it
opies a virtual �le to a real �le,

optionally
hanging the kernel (�le format). It thus provides �ltering and binning
apability, and also format

onversion.

Data Model tools use as input a �lename followed by a series of optional quali�ers in square bra
kets [℄:

filename[blo
k℄[filter℄[
olumns/binning℄[opt℄

{blo
k identi�es whi
h se
tion of the data�le is to be used

{�lter spe
i�es the �lter to be applied

{
olumns spe
i�es whi
h
olumns of a table should be used (only used when output is a table)

{binning makes an image from a table (only used when output is an image).

{opt allows the user to modify the default behaviour of the tool.

Any quali�er
an be omitted, but those whi
h are used should be in the order given above.

Data�le names are
ase sensitive; other names are
ase insensitive for mat
hing (but
ase sensitive for

output).

Full detail on syntax
an be found in Se
tion 3.5.1, Se
tion 3.6, and Chapter ??.

3.2.2 Multiple input and output �les

In addition to the generi
 DM syntax, DM tools
an operate on `sta
ks' of data. This essentially runs the

tool in a loop operating on several �les.

There are three forms of sta
ks:

1) As
ii �le sta
ks

dm
opy �instk �outstk

where instk and outstk are ASCII �les,
ontaining one line per entry, ea
h line should be a valid DM

blo
k de�nition (a �lename, or a �ltered �lename). This will perform dm
opy multiple times, one on ea
h

input/output pair.

3.3. Introdu
tion to the tools 15

2) Grid sta
ks

It is possible to treat multiple `regions' as separate input �les.

dmextra
t "evt.fits[sky=pgrid(4096.0,4096.0,0.0:100.0:10.0,0.0:360.0:360.0)℄" �outstk

option=pha1

Extra
ts a set of spe
tra in ten annuli in
reasing by 10 pixels radius in ea
h step. There are two grid

operators, pgrid (pie grid) and rgrid (re
tangle grid). Their syntax is:

pgrid(x
en,y
en,rmin:rmax:dr,thetamin:thetamax:dtheta)

rgrid(xmin:xmax:dx,ymin:ymax:dy)

More details are given in se
tion ??.

3) Wild
ard sta
ks

dmextra
t "a
is*evt1.fits" out.fits option=pha2

takes several event �les mat
hing the unix �lter (but not expanded by unix; you need the quotes to prevent

this) and extra
ts a spe
trum from ea
h.

3.3 Introdu
tion to the tools

The following se
tions allow the users to familiarize themselves with some of the
apabilities of the Data

Model by running
ommands in various ways. They begin in a sequen
e whi
h is likely to be part of a data

analysis session: examining the
ontents of �les using dmlist, �ltering a �le using dm
opy, and extra
ting a

spe
trum using dmextra
t. However, for an example of an analysis session, the user is referred to Beginner's

Guide and S
ien
e Threads.

To run a program, you
an either type the name, say `dm
opy', and hit return, to be prompted for parameters,

or give the parameters on the
ommand line.

3.3.1 dmlist

Often in preparation for �ltering a �le, it may be ne
essary to examine the
ontents of the �le su
h as the

names of the
olumns. This
an be done using the task dmlist.

1. Listing the blo
ks in a FITS �le.

dmlist has an option allowing you to
ontrol whi
h information is printed; the highest level view, showing

the stru
ture of the �le, is done by:

16 CHAPTER 3. THE DATA MODEL WALKTHROUGH

dmlist file.dat blo
ks

or

dmlist file.dat opt=blo
ks

In our test �le, this gives the result

--

Dataset: file.dat

--

Blo
k Name Type Dimensions

--

Blo
k 1: HDU0 Null

Blo
k 2: EVENTS Table 20
ols x 6933 rows

Blo
k 3: GTI Table 2
ols x 3 rows

This tells us the �le has 3 blo
ks,
onsisting of a null blo
k followed by 2 tables, the �rst of whi
h has 20

olumns and 6933 rows.

In general, the CXC tools operate on a single `blo
k' (table or image) in the �le. If you want to look at the

header for a blo
k
alled EVENTS quote the blo
k name in square bra
kets following the �lename:

dmlist "file.dat[events℄" header

Note that in a typi
al Unix shell (
sh, ksh) you have to en
lose the �lename string in quotes, be
ause

Unix wants to do something spe
ial with the square bra
kets. Like all the CXC software, dmlist uses the

parameter �le interfa
e, whi
h allows you to be prompted for the parameters. If you use the intera
tive

parameter prompting me
hanism:

dmlist <hit return key>

infile (): file.dat[events℄

opt (): header

here, you don't have to use the quotation marks, sin
e the parameter �le interfa
e doesn't do anything

spe
ial with the square bra
kets.

2. Inspe
ting the
olumns of the EVENT blo
k.

Now we probably want to look at the EVENTS table to see what quantities we
an �lter on. The `
ols'

option in dmlist does this job:

unix: dmlist evt.fits
ols outfile=tmp1

3.3. Introdu
tion to the tools 17

This sends the output to the �le tmp1; it lists the
olumns in the table and gives their unit, type, and valid

range. After the
olumns, any
oordinate systems on the
olumns are shown. For instan
e, DM
olumn 8 is

"sky(x,y)", a "ve
tor
olumn" whi
h
onsists of two FITS �le
olumns x and y. The unit of "sky" is pixel;

it is a 4 byte real and runs from 0.5 to 8192.5. Note that in Chandra software, the
enter of a pixel always

has pixel
oordinates with no fra
tional part, so the
enter of the lower left pixel has pixel
oordinates (1.0,

1.0) but the bottom left
orner of that pixel, whi
h is the minimum value a
oordinate
an have, is always

(0.5,0.5). The notation at the bottome of the listing shows that
olumn 8 has a
oordinate system atta
hed:

the system EQPOS(RA,DEC) whi
h is symboli
ally de�ned in terms of sky(x,y) by an equation. Note that

the `TAN' in the equation refers to the tangent plane proje
tion operator and not the simple trigonometri

fun
tion. From this output you
an easily read o� the the fa
t that the tangent point is at (4096.5,4096.5)

and has RA,DEC
oordinates (23.4621,30.6603).

--

Columns for Table Blo
k EVENTS

--

ColNo Name Unit Type Range

1 time s Real8 83981689.6948460042: 84029906.7216549963 S/C TT
orresponding to mid-exposure

2

d_id Int2 0:9 CCD reporting event

3 node_id Int2 0:3 CCD serial readout amplifier node

4 expno Int4 0:2147483647 Exposure number of CCD frame
ontaining event

5
hip(
hipx,
hipy) pixel Int2 1:1024 Chip
oords

6 tdet(tdetx,tdety) pixel Int2 1:8192 ACIS tiled dete
tor
oordinates

7 det(detx,dety) pixel Real4 0.50: 8192.50 ACIS dete
tor
oordinates

8 sky(x,y) pixel Real4 0.50: 8192.50 sky
oordinates

9 phas[3,3℄ adu Int2(3x3) -4096:4095 array of pixel pulse heights

10 pha adu Int4 0:36855 total pulse height of event

11 energy eV Real4 0: 1000000.0 nominal energy of event (eV)

12 pi
han Int4 1:1024 pulse invariant energy of event

13 fltgrade Int2 0:255 event grade, flight system

14 grade Int2 0:7 binned event grade

15 status[4℄ Bit(4) event status bits

ColNo Name

5: CPC(CPCX) = (+0)[mm℄ +(+0.0240)* (
hip(
hipx)-(+0.50))

(CPCY) (+0) (+0.0240) ((
hipy) (+0.50))

7: MSC(THETA) = (+0)[deg℄ +TAN-P[(+0.000136667)* (det(detx)-(+4096.50))℄

(PHI) (+0) (+0.000136667) ((dety) (+4096.50))

8: EQPOS(RA) = (+23.4621)[deg℄ +TAN[(-0.000136667)* (sky(x)-(+4096.50))℄

(DEC) (+30.6603) (+0.000136667) ((y) (+4096.50))

3. Inspe
ting the event information and format of the EVENT blo
k.

Next we use the `data' option in dmlist to look at the a
tual table data. The `rows' parameter to dmlist
an

be used to list only the �rst few rows.

unix: dmlist "evt.fits[events℄" data rows=1:4 outfile=tmp2

unix:
at tmp2

18 CHAPTER 3. THE DATA MODEL WALKTHROUGH

--

Data for Table Blo
k EVENTS

--

ROW time

d_id node_id expno
hip(
hipx,
hipy) tdet(tdetx,tdety) det(detx,dety) ...

1 83982738.2467849255 7 1 3 (287,518) (4204,2220) (4166.1630859375, 4099.5781250) ...

2 83982738.2467849255 7 1 3 (318,558) (4235,2260) (4197.0996093750, 4059.6164550781) ...

3 83982741.4876454622 7 0 4 (49,347) (3966,2049) (3928.5751953125, 4270.468750) ...

4 83982741.4876454622 7 1 4 (357,483) (4274,2185) (4236.082031250, 4134.4916992188) ...

The output has been trun
ated sin
e the rows are very long.

4. Displaying spe
i�

olumns. It is possible to spe
ify whi
h
olumns are to be output using a virtual

�le �lter, whi
h we'll talk a lot more about later. The virtual �le
ommand below sele
ts the
olumns time,

and the x and y
oordinates, again for an abbreviated list of rows. The table below shows the results.

unix: dmlist "evt.fits[events℄[
ols time,sky℄" data rows=1:4

--

Data for Table Blo
k EVENTS

--

ROW time sky(x,y)

1 83982738.2467849255 (4092.8640136719, 4100.8286132812)

2 83982738.2467849255 (4042.3723144531, 4098.6845703125)

3 83982741.4876454622 (4369.5009765625, 4196.4272460938)

4 83982741.4876454622 (4080.7888183594, 4024.1035156250)

5. Filtering. It is also possible to �lter the �le in making the list. The following
ommand uses the same

�le and
olumn sele
tion but further sele
ts only rows with a range of energy
hannels (pha=200:300) and

a small part of the image (sky
oordinates x between 3900 and 4500, and y between 3650 and 4250). Note

that I was lazy and omitted to say that I wanted the `[events℄' blo
k - the DM is smart enough to guess that

[events℄ is the most interesting blo
k in the �le and uses it if I don't spe
ify one.

unix: dmlist "evt.fits[pha=200:300,x=3900:4500,y=3650:4250℄[
ols time,sky℄" data rows=1:4

--

Data for Table Blo
k EVENTS

--

ROW time sky(x,y)

1 83982738.2467849255 (4092.8640136719, 4100.8286132812)

3.3. Introdu
tion to the tools 19

2 83982738.2467849255 (4042.3723144531, 4098.6845703125)

3 83982754.3986033350 (4097.0952148438, 4097.5439453125)

4 83982757.6926859319 (4106.3100585938, 4098.53906250)

6. Inspe
ting the header.

It's often helpful to look at the header information in a �le. We distinguish two kinds of FITS header

keyword: stru
tural and true metadata. Stru
tural information that des
ribes how the �le is laid out is

intrinsi
 to the
hoi
e of the FITS format and not to the s
ienti�
 data; an example is the BITPIX keyword

des
ribing the data type or the TTYPE13 keyword des
ribing the name of the 13th table
olumn. We present

this information in a �le-format-independent way with the `
ols' option of dmlist. In
ontrast, true metadata

in
lude information like the name of the instrument used, or the nominal roll angle of the observation.

(Te
hni
al note: the exa
t line between the two kinds of header info is, of
ourse, a fun
tion of the abstra
t

data model, and one
ould imagine a more spe
ialized astronomi
al model in whi
h the instrument name is

an intrinsi
 pie
e of information).

By default, the `keys' option to dmlist gives you only the true metadata. To see the COMMENT and

HISTORY information, use `header' instead of `keys'; to see the stru
tural FITS keys as well use `header,raw'.

We trun
ate the output from these examples to show the �rst few entries.

unix: dmlist "evt.fits[EVENTS℄" keys

--

Header keys for blo
k EVENTS

--

0001 CONTENT EVT1 String

0002 HDUCLASS OGIP String

0003 HDUCLAS1 EVENTS String

0004 HDUCLAS2 ALL String

0005 ORIGIN ASC String Sour
e of FITS file

0006 CREATOR a
is_pro
ess_events - Version CIAO 2.0b String tool that
reated this out

0007 REVISION 1 Int4

0008 ASCDSVER CIAO 2.0alpha Thursday, O
tober 26, 2000 String ASCDS version number

0009 CHECKSUM JgZBLZZBJfZBJZZB String HDU
he
ksum updated 2001-10-15T15:11:13

0010 DATASUM 3225918943 String data unit
he
ksum updated 2001-10-15T15:11:13

0011 DATE 2000-10-30T14:12:54 String Date and t

...

unix: dmlist "evt.fits[EVENTS℄" header

--

Header keys for blo
k EVENTS

--

-- COMMENT This FITS file may
ontain long string keyword values that are

20 CHAPTER 3. THE DATA MODEL WALKTHROUGH

-- COMMENT
ontinued over multiple keywords. The HEASARC
onvention uses the &

-- COMMENT
hara
ter at the end of ea
h substring whi
h is then
ontinued

-- COMMENT on the next keyword whi
h has the name CONTINUE.

0001 CONTENT EVT1 String

0002 HDUCLASS OGIP String

0003 HDUCLAS1 EVENTS String

0004 HDUCLAS2 ALL String

0005 ORIGIN ASC String Sour
e of FITS file

0006 CREATOR a
is_pro
ess_events - Version CIAO 2.0b String tool that
reated this out

0007 REVISION 1 Int4

0008 ASCDSVER CIAO 2.0alpha Thursday, O
tober 26, 2000 String ASCDS version number

0009 CHECKSUM JgZBLZZBJfZBJZZB String HDU
he
ksum updated 2001-10-15T15:11:13

0010 DATASUM 3225918943 String data unit
he
ksum updated 2001-10-15T15:11:13

0011 DATE 2000-10-30T14:12:54 String Date and time of file
reation

...

unix: dmlist "evt.fits[EVENTS℄" header,raw

--

Raw Header keys for blo
k EVENTS

--

Key 1: C *XTENSION = BINTABLE / binary table extension

Key 2: I *BITPIX = 8 / 8-bit bytes

Key 3: I *NAXIS = 2 / 2-dimensional binary table

Key 4: I *NAXIS1 = 78 / width of table in bytes

Key 5: I *NAXIS2 = 30041 / number of rows in table

Key 6: I *PCOUNT = 0 / size of spe
ial data area

Key 7: I *GCOUNT = 1 / one data group (required keyword)

Key 8: I *TFIELDS = 19 / number of fields in ea
h row

Key 9: C *EXTNAME = EVENTS / name of this binary table extension

Key 10: C *HDUNAME = EVENTS / ASCDM blo
k name

Key 11: C *TTYPE1 = time / S/C TT
orresponding to mid-exposure

Key 12: C *TFORM1 = 1D / format of field

Key 13: C *TUNIT1 = s /

Key 14: C *TTYPE2 =

d_id / CCD reporting event

Key 15: C *TFORM2 = 1I / format of field

Key 16: I *TLMIN2 = 0 /

Key 17: I *TLMAX2 = 9 /

Key 18: C *TTYPE3 = node_id / CCD serial readout amplifier node

Key 19: C *TFORM3 = 1I / format of field

Key 20: I *TLMIN3 = 0 /

Key 21: I *TLMAX3 = 3 /

...

Key 103: C CONTENT = EVT1 /

Key 104: C HDUCLASS = OGIP /

Key 105: C HDUCLAS1 = EVENTS /

Key 106: C HDUCLAS2 = ALL /

Key 107: C ORIGIN = ASC / Sour
e of FITS file

3.3. Introdu
tion to the tools 21

Key 108: C CREATOR = a
is_pro
ess_events - Version CIAO 2.0b / tool that
reated this out

Key 109: I REVISION = 1 /

Key 110: C ASCDSVER = CIAO 2.0alpha Thursday, O
tober 26, 2000 / ASCDS version number

Key 111: C CHECKSUM = JgZBLZZBJfZBJZZB / HDU
he
ksum updated 2001-10-15T15:11:13

Key 112: C DATASUM = 3225918943 / data unit
he
ksum updated 2001-10-15T15:11:13

Key 113: C DATE = 2000-10-30T14:12:54 / Date and time of file
reation

...

In this
ase, stru
tural keys are marked with an asterisk.

Full dis
ussion of syntax for dmlist is given in the
ookbook (Se
tion ??).

3.3.2 dm
opy

Several examples of the
apabilities of dm
opy are provided below. NOTE THAT THE bin DIRECTIVE

(IN DMCOPY AND OTHER CIAO TOOLS) CREATES AN IMAGE.

1. Making an image from a table. The example is an event table (in the [EVENTS℄ blo
k)
reated in

a MARX simulation
alled marx.�ts. This bins in both
oordinates tdetx and tdety from 0.5 to 8192.5 in

steps of 8 (so that the pixel size is in
reased by a fa
tor of 8). More details about the �ltering and binning

sele
tion possibilities are given in Se
tion 3.5. This
reates the output �le tx0.fits.

unix: dm
opy "marx.fits[EVENTS℄[bin tdetx=0.5:8192.5:8,y=0.5:8192.5:8℄" tx0.fits

The bin
ommand in dm
opy
reates an image format �le. In this example, the input �le has a size of 1.0

MB and the output �le, even at this redu
ed resolution, is 2 MB; in X-ray data, most pixels are zero so the

image format is not an eÆ
ient way to store things. To view the output you
an use any FITS image viewer,

for example:

unix: ds9 tx0.fits &

The header of the image �le retains information on the original, unbinned
oordinate system. Several other

examples of dm
opy using the same MARX simulation are given below.

2. Extra
ting the
enter of a FITS �le. The following
ommand extra
ts the
enter of the image

marxn.�ts at half resolution. Again, the [EVENTS℄ blo
k from the MARX simulation is used. In this
ase,

the user is prompted for the parameters.

unix: dm
opy

Input dataset/blo
k spe
ifi
ation (marx.fits[EVENTS℄):

marx.fits[EVENTS℄[bin tdetx=4000:4200:2,tdety=4050:4250:2℄

Output dataset name (tx0.fits): tx1.fits

3. Filtering a FITS �le both spatially and spe
trally. The following
ommand will extra
t the
entral

part of the image and a restri
ted set of energies. The event �le is turned into a 3-dimensional image with

pixels blo
ked by a fa
tor of 10 in tdetx and tdety and a fa
tor of 100 in pha.

22 CHAPTER 3. THE DATA MODEL WALKTHROUGH

unix: dm
opy "marx.fits[EVENTS℄[bin tdetx=3900:4500:10,tdety=3650:4250:10,

pha=200:500:100℄" tx6.fits

The output �le is tx6.�ts, a 40 KB �le.

4. Filtering on spa
e while binning on energy and time. The following
ommand
reates a �le

(tx3.�ts) whi
h
an be used to examine the spe
trum as a fun
tion of time. The spe
trum is
reated from

the region in dete
tor
oordinates tdetx between 4100 and 4300 and tdety between 3850 and 4050 with the

default pixel size. The time interval 47144000 to 47148000 s is binned into steps of 100 s, and the approximate

energy is binned into 100 eV bins. Displaying the resulting image reveals times of high ba
kground whi
h

are easily pi
ked out in the energy-resolved light
urve.

unix: dm
opy "evt.fits[x=3900:4200,y=3900:4200℄[bin time=83981689:84029906:100,energy=300:10000:100℄" te.fits

3.3.3 dmextra
t

dmextra
t is a program whi
h does a similar binning operation to that available in dm
opy, ex
ept that

the resulting histogram is stored as a table rather than an image.

The default mode of dmextra
t (`opt=pha1') makes a HEASARC-
ompatible PHA spe
tral �le, binning on

pulse height. Its generi
 mode (`opt=generi
') allows you to bin on any one-dimensional quantity (e.g. time,

to make a light
urve) or two-dimensional set of regions (e.g. a set of annuli, to make a radial pro�le). The

output is a histogram of the data, together with histograms of
ounting errors and
ounting rates.

As an example, the following
ommand will start with the event list evt.fits and
reate the �le sour
e.pha

from a limited spatial region (sky
oordinates within 20 pixels of a spe
i�ed pixel position) using pi (pulse

invariant bin) energy
hannels from 1 to 1024, binned in steps of 2
hannels.

unix: dmextra
t "evt.fits[sky=
ir
le(4096,4096,20)℄[bin pi=1:1024:2℄" sour
e.pha

The stru
ture of the �le
an be seen with dmlist:

unix: dmlist sour
e.pha
ols

--

Columns for Table Blo
k SPECTRUM

--

ColNo Name Unit Type Range

1 CHANNEL
hannel Int4 1:512 PI

2 PI
han Real8 1.0: 1024.0 pulse invariant energy of event

3 COUNTS
ount Int4 - Counts

4 STAT_ERR
ount Real8 -Inf:+Inf Statisti
al error

5 COUNT_RATE
ount/s Real8 -Inf:+Inf Rate

3.3. Introdu
tion to the tools 23

3.3.4 Other simple DM tools

dmappend

dmappend is a simple tool whi
h sti
ks a single blo
k (table or image) from one �le onto the end of another.

dmappend "psp
.fits[stdevt℄" marx.fits

This
opies the blo
k STDEVT from psp
.�ts to the end of the preexisting �le marx.�ts.

dmmerge

dmmerge merges two
ompatible tables. The intent is to allow the user to merge two event lists whi
h are

segments of a single observation. Note that we don't yet have a tool to (validly) merge event lists whi
h have

di�erent nominal pointing dire
tions. The reproje
t events tool (see `ahelp reproje
t events)
an do this.

dmmerge �merge.lis
olumnList="x,y,time" outfile=merge.out

where merge.lis is an as
ii �le with a list of input blo
ks or �lenames (one per line). Ea
h blo
k will be

opened with the given
olumn list (it just
reates a normal data model open with \�lename[
ols x,y,time℄");

any �le whi
h doesn't have one of the requested
olumns will be skipped. The output �le will have a single

blo
k, a table whose rows are the rows of the input �les appended to ea
h other. No sorting of the data is

performed, so all the rows of the se
ond �le will
ome after all the rows of the �rst �le.

The tri
ky part is merging the header keywords. dmmerge uses a lookup
on�guration �le to sele
t spe
ial

behaviour for parti
ular header keywords. The
on�guration �le provided with the present release is used in

Chandra pipeline pro
essing to for
e a spe
i�
 header style. In later releases we will also provide a simpler

lookup �le whi
h won't be Chandra-spe
i�
.

The default value of the lookupTab parameter is dmmerge header lookup.txt in the $ASCDS CALIB dire
-

tory.

The interfa
e and behaviour of this tool is likely to
hange in future releases, so be
areful about using it in

s
ripts et
.

dmhedit

dmhedit is a program to edit �le headers. It's similar in spirit to the FMODHEAD ftool, but operates at

a higher level of abstra
tion. Users are warned that the implementation in the
urrent release has some

problems, parti
ularly with string keywords and with editing existing keys.

The input dataset/blo
k spe
i�
ation
an either be a single �le (dmtest.�ts[stdevt℄) or a sta
k of input �les

(�insta
k).

24 CHAPTER 3. THE DATA MODEL WALKTHROUGH

The ASCII edit list �le
an
ontain two kinds of lines: (1)
ontrol lines, beginning with # (2) edit lines The

ontrol lines spe
ify what to do with ea
h of the edit lines until the next
ontrol line. The valid
ontrol lines

are:

#add, #delete,

These lines indi
ate that the subsequent edit lines are keywords to be added at the end of the blo
k header,

deleted, or added immediately following the spe
i�ed existing key. Any other
ontrol line is treated as a

omment. Ea
h edit line has the form (free format):

KEYNAME = full value

and full value is made up of: value, or value /
omment, or value / [unit℄, or value / [unit℄
omment.

If the value is a string value, it should be in
luded in single quotes.

An example
ommand using dmhedit would be:

unix: dmhedit psp
.fits filelist=edit.lis

where edit.lis is an edit list �le.

An example of an edit list �le is:

#add

LIVETIME = 142.3 / [s℄ Live time

INSTRUME = 'HRC-S'

#delete

PHAMAX

#add

HDUCLAS3 = 'SPECIAL'

HDUVER = 1.2 / HDU revision

COMMENT HDUCLAS3 is a spe
ial keyword from Goddard

COMMENT whose value is spurious here.

HISTORY HDUCLAS3 added by header edit, while HDUVER

HISTORY is a made up keyword.

#add

GAUSS.POWER = -1.8 / Power law index

dmhedit also has a
ommand line `single' mode to edit a single keyword:

dmhedit psp
.fits filelist=none operation=add key=INSTRUME value='HRC-S'

dmregrid

dmregrid regrids a sta
k of (2-dimensional) images, by applying binning, rotation and o�set to ea
h image.

The relevant parameters are

3.3. Introdu
tion to the tools 25

in�le The input image or image sta
k.

out�le The �nal regridded output image.

bin X and Y binning spe
i�
ation, given in the format minx:maxx:binx,miny:maxy:biny. Can be spe
i�ed

as an input sta
k.

rotangle Rotation angle in degrees, measured
ounter-
lo
kwise. Can be spe
i�ed as a sta
k.

rotx
enter X
oordinate in pixels of
enter of rotation. Can be spe
i�ed as a sta
k.

roty
enter Y
oordinate in pixels of
enter of rotation. Can be spe
i�ed as a sta
k.

xo�set X o�set to be applied to regridded image. Can be spe
i�ed as a sta
k.

yo�set Y o�set to be applied to regridded image. Can be spe
i�ed as a sta
k.

npts Integer between 0 and 999, determines sampling level.

Input sta
ks are ASCII �les with �elds delimited by
omma or spa
e.

Example of a
ommand using sta
k input:

unix: dmregrid infile=�inlist outfile=newimage.fits bin=�binlist rotangle=�rotlist

rotx
enter=�xrotlist roty
enter=�yrotlist xoffset=�xofflist yoffset=�yofflist npts=0

lobber=yes verbose=1

All of the above parameters whi
h
an be spe
i�ed as input sta
ks
an also be spe
i�ed as single values, in

whi
h
ase the same value will be applied to all input images. If there is a sta
k of input images, the �nal

output image will be the sum of the individual regridded images. Physi
al and world
oordinate systems are

atta
hed to the output image.

If npts=0, then for ea
h pixel overlapping a regridded pixel, a polygon is
reated that is the interse
tion of

the two pixels. The area of this polygon is
al
ulated and is used to weight the number of
ounts within the

unit pixel to be allo
ated to the regridded pixel. If npts is given a positive value, an approximate regridding

algorithm is used in whi
h npts�npts uniformly spa
ed points within a regridded pixel are sampled. The

appropriate fra
tion of the number of
ounts within the unit pixel en
ompassing ea
h sampling point is then

allo
ated to the regridded pixel. The approximate algorithm is about an order of magnitude faster than the

exa
t algorithm.

By spe
ifying binning and setting all other parameters to zero, it is possible to have dmregrid do dm-

opy's task (whi
h dm
opy
annot yet do) of binning an image. Setting npts to something other than zero

signi�
antly speeds up the pro
essing. Thus, for example, to bin a 512x512 image by 2, one
ould say

unix: dmregrid infile=fullresimage.fits outfile=binimage.fits bin=1:512:2,1:512:2,

rotangle=0 rotx
enter=0 roty
enter=0 xoffset=0 yoffset=0 npts=3

The reason for expli
itly setting some parameters to zero rather than just omitting them from the
ommand,

is that the tool will look up the values of all omitted parameters in the parameter �le and use those values.

That is, it will use the value that was used the last time that parameter was expli
itly set. See se
tion ??

for some more information about parameter �les.

Note

26 CHAPTER 3. THE DATA MODEL WALKTHROUGH

dmregrid in its
urrent version
annot handle an input binning spe
i�
ation sta
k in whi
h a subsequent

item results in a greater number of output pixels than the �rst item. This bug will be �xed for the next

release or pat
h.

dmimg
al

dmimg
al
 performs basi
 arithmeti
 on images. It is a tool still in a preliminary stage. Its
urrent abilities

in
lude adding, subtra
ting, mulitplying, dividing and
omparing two images, with optional `weights' on the

input images. Operations on single images are not possible.

The syntax is

dmimg
al
 image1.fits image2.fits outimage.fits op weight=<
onstant> weight2=<
onstant>

where op is one of: add, mul, sub, div, tst. If op equals `tst' then the output image should be spe
i�ed to be

\none". dmimg
al
 only tests whether the images are numeri
ally identi
al. Other tests are not yet possible.

A typi
al
ommand would be

unix: dmimg
al
 a
is1.fits exposure.fits normal.fits div

whi
h divides the a
is image by the exposure map and puts the result into the �le normal.�ts,

or

unix: dmimg
al
 a
is1.fits a
is2.fits sum.fits add weight=2.5 weight2=1.414

whi
h is equivalent to (2:5� a
is1:�ts) + (1:414� a
is2:�ts).

dmstat

dmstat
omputes standard statisti
s for a table or an image. For tables it outputs the minimum value, the

maximum value, the standard deviation, the number of good values and the sum of the entire
olumn. For

an image it outputs the minimum and maximum values, the standard deviation, the sum, and the
entroid.

The syntax is

dmstat filename

where �lename is a Data Model virtual �le spe
i�
ation. That is, you
an �lter the input to the tool. Sample

ommands and the
orresponding output are shown below.

To get information on the time and pha
ols:

unix: dmstat "file.fits[
ols time,pha℄"

time[s℄

min: 53161434.770097

3.4. Design Overview 27

max: 53174191.333063

mean: 53167802.580212

sig: 3692.285028

total: 2097257140579.023438

good: 39446.000000

nulls: 0

pha[adu℄

min: 43.000000

max: 3747.000000

mean: 860.133651

sig: 1046.696570

total: 33928832.000000

good: 39446.000000

nulls: 0

To get statisti
s on an image minus a region:

unix: dmstat "image.fits[\!
ir
le(50,50,10)℄"

PRIMARY(AXIS1, AXIS2)

min: -19.777779

max: 5.555553

ntrd: (168.334862 ,146.626860)

std: (75.583215 ,73.827393)

sum: 10806.778002

unix: dmstat "file.fits[
ols sky℄"
entroid=yes sigma=yes

sky(x, y)[pixel℄

min: (3900.00513 3900.00854)

max: (4411.99805 4411.96045)

mean: (4125.71523 4117.71857)

sigma: (113.777582 110.039969)

sum: (123940611 123700384)

good: (30041 30041)

null: (0 0)

There is a bug in this version of dmstat that
auses in
orre
t extra
tion of WCS
olumn names, leading to

the \EQPOS" above instead of RA and DEC.

3.4 Design Overview

We have aimed to design a high level interfa
e to the data whi
h doesn't depend on the details of the exa
t

�le format being used. This leads to the idea of a `data model', in other words an abstra
t model of the data

28 CHAPTER 3. THE DATA MODEL WALKTHROUGH

�le that gives a
ommon language whi
h
an apply to di�erent �le formats. This is possible be
ause all of

the data we use in X-ray astronomy data analysis is stored in a few
ommon (albeit
ompli
ated) stru
tures,

so that although data produ
ts like event lists, sour
e lists, and exposure maps are all quite di�erent from

the astronomer's point of view, they a
tually have a lot in
ommon in their underlying stru
ture. The data

model provides a way of exploiting these similarities and des
ribing the di�eren
es. De�ning the data model

in a way independent of the �le format means that we
an operate transparently on both FITS and IRAF

format data �les (and later
an add other formats without
hanging the interfa
e), and we
an deal with

high level stru
tures like
oordinate systems without the user having to know the latest FITS
onventions

for storing that information.

Although our jargon is a little di�erent, in pra
ti
e the interfa
e is very similar to SAO's IRAF x-ray pa
kage,

PROS, with whi
h users of ROSAT data will be familiar. We've upgraded the interfa
e to make it mu
h

more general, and the insides are
ompletely redone so that it will work on FITS �les as well as PROS style

QPOE and IMH �les. At the lowest level, our software
alls Bill Pen
e's CFITSIO library for its FITS

a

ess, and Doug Tody's IRAF system libraries to read IRAF format �les. However, the software does not

require an IRAF installation unless you want to run the programs as IRAF tasks.

The goals of the CXCDM library are:

� to provide an easy way to �lter and bin data �les at runtime, extending the fun
tionality provided in

the PROS system. The user
an spe
ify a �ltered or transformed version of their input �le, without

the individual appli
ation having to expli
itly perform �ltering.

� to provide a
ommon view of multiple �le formats, in
luding FITS, IRAF/QPOE, and ASCII �les,

and isolate the details of those formats from the
alling program. This data a

ess layer for all our

software also allows us to isolate all of the format-spe
i�
 keyword
onventions, keeping them up to

date without having to rewrite ea
h individual appli
ation program.

� to provide a programming interfa
e to the data whi
h is higher level than basi
 I/O libraries like

CFITSIO, but is still generi
.

� to support en
oding a greater level of self-des
ription in the data �les while retaining ba
k
ompatibility

with existing
onventions.

To the user, that �rst item is the main one of interest, although users who like writing their own analysis
ode

will want to take a look at our programmers' guide whi
h addresses the se
ond item. For a more detailed

look at the ideas behind the CXCDM, refer to our design overview do
ument.

3.5 Filtering

Filtering �les (i.e. sele
ting subsets of a data �le by spatial position, energy and/or time) is one of the most

important features of CXCDM.

3.5.1 Syntax

The full syntax of a data model �lter is a �lename followed by a series of optional quali�ers in square

parentheses:

3.5. Filtering 29

filename[blo
k℄[filter℄[
olumns℄[binning℄

The blo
k quali�er spe
i�es whi
h se
tion of the �le to use; in FITS, it spe
i�es an HDU (Header Data

Unit). The FTOOLS syntax of [n℄, where n is the HDU number
ounting from 1, is a

epted, but the name

(EXTNAME/HDUNAME value) of the HDU is equally valid and in many
ases will be more intuitive. If

the blo
k quali�er is omitted, the �rst `interesting' blo
k will be used - the �rst FITS HDU for whi
h NAXIS

is nonzero, ex
luding GTI and WMAP extensions.

The �lter quali�er spe
i�es whi
h rows of a table or pixels of an image to use, by �ltering on the values

of
olumns or axes. A nontrivial �lter example is [pha=3:20,time=100:200,250:300,450:500,

d id=3℄. The

�lter on ea
h variable is expressed as a series of a

eptable ranges. Logi
al operators (&, <, et
) may also

be used, as des
ribed in the detailed DM virtual �le do
umentation.

The
olumns quali�er spe
i�es whi
h
olumns from a table should be used; it
annot be used with images.

The binning quali�er makes an image from a table, binning on any
olle
tion of
olumns, optionally

spe
ifying the ranges and binning fa
tors:

[bin x=100:612:4,y=512:1024:4,time=8441014.3:8441420.8:20.2℄

spe
i�es making a 3-dimensional x,y,time
ube in whi
h ea
h x,y pixel is 4 input pixels, and ea
h time pixel is

20.2 se
onds. The �rst two
oordinates de�ne the axes of the image; (in this
ase x,y but
ould be detx,dety

or time,pha or ...)

Note

When spe
ifying a virtual �le on the
ommand line, it is ne
essary to en
lose the entire �le spe
i�
ation in

double quotes, e.g.

unix: dm
opy "file.fits[bin x=100:612:4,y=512:1024:4℄" image.fits

be
ause the Unix shell will otherwise attempt to parse the
ommand line instead of passing the entire

argument to the DM tool. If you
hoose to start the tool without a �le spe
i�
ation and be prompted for

parameter values, then you should not use the quotes.

unix: dm
opy

Input dataset/blo
k spe
ifi
ation (): file.fits[bin x=100:612:4,y=512:1024:4℄

Output dataset name (): image.fits

Cautions

The order of the syntax is very important. For instan
e, you
an use dm
opy to
reate a �ltered image

evt1.out from the event list �le Sour
es_evt.fits with the
ommand below. This will produ
e an image

ontaining the data from the region x 16370 to 16390 and y 16370 to 16390 imbedded in a larger region from

x 16350 to 16410 and from y 16350 to 16410
ontaining no
ounts.

unix: dm
opy "Sour
es_evt.fits[x=16370:16390,y=16370:16390℄[bin x=16350:16410,

y=16350:16410℄" evt1.out

Reversing the order of the quali�ers is not allowed:

30 CHAPTER 3. THE DATA MODEL WALKTHROUGH

unix: dm
opy "Sour
es_evt.fits[bin x=16350:16410,y=16350:16410℄

[x=16370:16390,y=16370:16390℄" evt2.out

If the previous
ommand is broken down into two
ommands like this,

unix: dm
opy "Sour
es_evt.fits[bin x=16350:16410,y=16350:16410℄" tmp1.out

unix: dm
opy "tmp1.out[25:45,25:45℄" tmp2.out

the result is di�erent from the �rst example. First a �le tmp1.out is
reated whi
h is an image
ontaining

the events from x 16350 to 16410 and from y 16350 to 16410. This image is further �ltered so that the

output �le tmp2 is only the smaller image
ontaining x from 25 to 45 and y from 25 to 45 (in the
oordinate

system of tmp1.out); not a small image imbedded in a larger blank image (above: evt1.out).

3.5.2 Virtual Files

A powerful
apability of the CXCDM is being able to use a �ltered version of a �le without a
tually writing

it to disk. That is, in any program using the CXCDM interfa
e, you
an pass a `virtual �le' where an input

�le is expe
ted. The virtual �le is impli
itly
reated from a true disk �le by �ltering or binning, but does

not get
reated on disk or even formatted into a Unix pipe. Instead, I/O
alls in the program return re
ords

of the virtual �le by internally a

essing the a
tual disk �le and �guring out whi
h data passes the �lter.

For instan
e, for a sour
e dete
tion program CELLDETECT you have an event list from a full resolution

32k square HRC image. In this example we use the event list for the image Sour
es_evt.fits. The output

�le
ontaining the sour
es found is
alled Sour
es_evt_sr
.fits.

unix:
elldete
t infile="Sour
es_evt.fits" outfile="Sour
es_evt_sr
.fits"

However, be
ause of spa
e or run-time limitations, you want to use CELLDETECT to �nd the sour
es in

only part of the image. Instead of running CELLDETECT on the full image, you
an pass it a subset of

that �le
ontaining only x values in a limited range, without �rst
reating any intermediate disk �le. The

program sees the `virtual' �le you have spe
i�ed. In this
ase, an image is
reated from the subset of the

event �le for X between 16350 and 16420 and Y in the same range, binned in steps of 1.

unix:
elldete
t infile="Sour
es_evt.fits[bin X=16350:16420:1,Y=16350:16420:1℄"

outfile="Sour
es_evt_sr
.fits"

To examine the output �le to see what sour
es were found, dmlist
an be used. First, inspe
t the blo
ks in

the output �le, whi
h shows that there are two blo
ks in the �le, with the sour
e list being the se
ond.

unix: dmlist "Sour
es_evt_sr
.fits" blo
ks

--

3.5. Filtering 31

Dataset: Sour
es_evt_sr
.fits

--

Blo
k Name Type Dimensions

--

Blo
k 1: HDU0 Null

Blo
k 2: SRCLIST Table 26
ols x 1 rows

The next step is to look at the result in the sour
e list (blo
k 2). In this
ase the RA, De
, sour
e
ounts and

sour
e
ount error are requested for the sour
es in the simulated image (in whi
h the one re
overed sour
e

is very
lose to the
enter of the image).

unix: dmlist "Sour
es_evt_sr
.fits[SRCLIST℄[
ols ra,de
,net_
ounts,net_
ounts_err℄" data

--

Blo
k 2: SRCLIST Table 4
ols x 1 rows

--

--

Data for Table Blo
k SRCLIST

--

ROW RA DEC NET_COUNTS NET_COUNTS_ERR

1 9.47086E-06 -1.24421E-05 186.0 15.6040

As another example, you
an
reate a virtual image from the event list, �ltering both spatially and in time.

The spatial subspa
e is the same as above, but the time range is from 37277062.1 to 37277062.2 se
onds.

unix:
elldete
t infile="Sour
es_evt.fits[events℄[time=37277062.1:37277062.2℄

[bin X=16350:16420:1,Y=16350:16420:1℄" outfile="Sour
es_evt_sr
.fits"

Note that in this
ase, the order in the syntax is important. This
ommand �rst goes to the events blo
k,

next �lters the data in time, and then makes an image by binning over the requested X and Y region. You

an't �lter after binning in the same operation. In addition, on
e the binning is done, the data no longer

ontains the time information.

The CXCDM supports the full spatial `region' �ltering used in PROS:

unix:
elldete
t infile="evt.fits[events℄[(ra,de
)=
ir
le(14:07:23 -00:14:23 3')℄[bin x,y℄"

outfile="result.fits"

32 CHAPTER 3. THE DATA MODEL WALKTHROUGH

This sele
ts only photons whose
elestial positions lie within 3 ar
min of the quoted
oordinates.

Cautions

Like many powerful
apabities, there are things that the user must be
areful of in using virtual �les.

1. If you provide this �le spe
i�
ation to a tool:

"Sour
es_evt.fits[events℄[bin X=10001:12048:1,Y=10001:12048:1℄"

this
reates a 2048x2048 image.

However,
onsider the spe
i�
ation:

"Sour
es_evt.fits[events℄[X=10001:12048,Y=10001:12048℄[bin x,y℄"

This does something slightly di�erent. The �le Sour
es_evt.fits
ontains the event list from a 32kx32k

simulated HRC image. The spe
i�
ation sele
ts events only in the limited range of x and y, but doesn't

restri
t the overall size of the implied image. The bin
ommand then
reates a 32kx32k image with zeroes

everywhere ex
ept in the spe
i�ed x and y range. This is probably not what the user wanted.

2. The �lters are re
orded in the �le's `data subspa
e'. Use `dmlist filename subspa
e' to see how the

�le has been �ltered.

3.6 Syntax summary

The syntax is largely inspired by the IRAF/PROS �ltering, regions, image se
tion, and blo
king
apabil-

ity. We have added intensity �ltering from XSELECT and relational �ltering and
olumn sele
tion from

ETOOLS. From MIDAS we plan to add �lter sta
king
apabilities but that isn't in the
urrent version. We

retain as mu
h as possible of the PROS �ltering syntax to keep it familiar to users of that system. We have

integrated the regions syntax with it, and added new
apabilities in a natural way. Keeping it
ompa
t was

an important goal.

The syntax
onsists of a string with quali�ers surrounded by square parentheses, (Se
tion 3.5.1) thus:

a[b℄[
℄[d℄[e℄

Ea
h group within square parentheses has a di�erent meaning. The parentheses minimize the risk of an

unintended string with a single mistype and make the
ommand more readable,

Dataset names are
ase sensitive. All other names are
ase-insensitive for mat
hing, but
ase-sensitive for

output. (In other words, if you ask to read a quantity evENts, the software will su

essfully �nd the table

EVENTS; but if you ask for an output table to be named evENts, that is exa
tly what it will be named.)

3.8. Data subspa
e 33

3.7 Multiple File Format Support

DM-aware programs will read any of the supported formats automati
ally, �guring out whi
h format is being

used by looking at the �le. The only restri
tion is that the IRAF formats su
h as QPOE and IMH must have

�lenames whi
h end with the appropriate extensions, .qp and .imh, sin
e the underlying IRAF subroutines

require this. By default, output �les will use the same format as the input �les, but that
an be overridden

by the use of the `format' parameter provided in ea
h CXCDM tool.

Although FITS �les will be used for all ar
hival and user data distribution purposes, for run time analysis,

and for
ompatibility for users working in the IRAF environment, our software will support the use of QPOE

event �les and IRAF IMH images. The `data model' knows whi
h stru
tures in QPOE and FITS �les are

equivalent. The various supported �le formats are
alled `kernels'. The ability to use one set of tools to

read multiple formats removes the need for
onversion tools and greatly improves interoperability. The gain

is also a snag: a given high level
on
ept may map to two quite di�erent representations in the data �le.

For example, Good Time Intervals (GTIs), whi
h represent the times on whi
h the data has been �ltered,

are stored in binary table extensions in FITS �les. In the QPOE �les the same information is stored in the

QPOE header rather than in a separate table. To allow a program to handle either FITS or QPOE, the

GTI's are handled as part of the `data subspa
e', dis
ussed below. To the user, the main e�e
t is that a

given events table `knows' about a GTI whi
h `belongs' to it, and operations
opying or �ltering the events

table will automati
ally
opy and update the GTI.

In the table below, we give some examples of
on
epts used in the CXCDM and how they map into the FITS

and QPOE formats.

Table 3.1: Examples of CXCDM abstra
tions

CXCDM abstra
tion FITS QPOE/IMH

Dataset File, may have many HDUs 1 or more �les

(Header Data Units)

Blo
k HDU Single �le

Table BINTABLE QPOE

Image IMAGE IMH

Column des
riptor TTYPE et
 QPOE stru
ture

TIME subspa
e GTI HDU deÆlt keyword

Other subspa
e keywords keywords

Coord des
riptor TCRVL keys Opaque binary MWCS

The third kernel we expe
t to support is an ASCII kernel, whi
h we anti
ipate will be most useful for

importing user tabular data. The exa
t format has not been �nalized, but will probably involve optional

free-format FITS-style header keywords and will also support the `rdb' Unix database format.

3.8 Data subspa
e

Another new
on
ept in the CXCDM is the `data subspa
e'. We are already used to the idea that it's

important to remember how the data have been �ltered. GTIs, PHA
hannel ranges, and SAOIMAGE

region �les are used to store this information. We think it's helpful to have a systemati
 approa
h. The

CXCDM data subspa
e is the list of `how this data has been sele
ted'. This list is updated as you further

34 CHAPTER 3. THE DATA MODEL WALKTHROUGH

�lter the �le, so that programs whi
h make use of the data subspa
e
an �gure out whi
h
alibrations to

apply.

The simplest data subspa
e �lter is the logi
al AND of the restri
tions on several
olumns, as in all the

�ltering examples given above.

More
omplex logi
al expressions, like `this data was taken when (X1=A AND X2=B) OR (X1=C AND

X2=D)' may be rare in pra
ti
e, but we have su
h a
ase with Chandra's ACIS CCD imager, where we

want to make a single event list for the multiple
hips, but due to dropouts and saturation e�e
ts the GTIs

may be di�erent for ea
h
hip. The ability to use OR in su
h �lters is also useful for
ombining data from

di�erent missions.

3.9 Header keys

Users sometimes have to look dire
tly at the header information in data �les. In this se
tion we des
ribe

some of the spe
ial keywords that CXCDM writes to FITS �les; other formats are handled in a similar way.

A full des
ription of our FITS
onventions is given in a separate do
ument.

� Grouped (`ve
tor')
olumns: we support giving a single name to a related group of
olumns, for instan
e

an X,Y position pair, a (start,stop) time bin, or a (value,un
ertainty) pair. The MTYPEn, MFORMn,

and METYPn keywords are used to do this.

� Long keyword names: we fake out the FITS restri
tion that keyword names
an only have 8
hara
ters

by using pairs of keywords DTYPEn and DVALn, one to hold the name and the other to hold the value.

DFORMn and DUNITn keywords
an also be used to spe
ify data type and unit. Of
ourse, sin
e

all existing keywords are 8
hara
ters or less, they don't use this
onvention and
ompatibility with

existing programs is �ne - they just won't re
ognize the new keywords, whi
h they're not expe
ting

anyhow.

� We re
ord the data subspa
e in a blo
k with the keywords DSTYPn, DSVALn, and DSREFn.

