
CXC-DM-012

CXC Data Model

Chandra Data Model Manual, Part 3:

User Reference

CIAO2.2 Edition
Chandra X-ray Center

2001 Oct

2

Contents

1 Introduction 5

2 Virtual File Syntax Reference 5

3 Base dataset 6

4 Block identifier 6

5 Table Filtering 7

5.1 Description . 7

5.2 Table filtering on columns with real data type 8

5.3 Table filtering on columns with integer data types 9

5.4 Table filtering on columns with character string data types 10

5.5 Table filtering on columns with bit data type 10

5.6 Table filtering on vector columns using region filters 10

5.7 Compound filters . 11

5.8 Exclude filters . 11

5.9 Filter syntax specification . 12

5.9.1 Filter variable names . 12

5.9.2 Range filters . 12

5.9.3 Image sections . 13

5.9.4 Relational filters . 14

5.9.5 Filter commands . 15

5.9.6 External filter commands . 15

2

3

6 Regions and region filtering 16

6.1 Issues with CIAO regions . 17

6.1.1 Celestial coordinate regions . 17

6.1.2 Stacks of single-shape regions versus regions with many shapes 17

6.1.3 Includes and Excludes . 18

6.1.4 Elliptical Annuli . 19

6.1.5 Region Areas (BACKSCAL) . 19

6.2 Examples . 19

6.3 Syntax definition . 20

7 Image Filtering 22

7.1 Image coordinates . 23

7.2 Image filtering on logical coordinates . 23

7.3 Image filtering on physical coordinates . 24

7.4 Image filtering on world coordinates . 24

8 Column selection 25

8.1 Description . 25

8.2 Syntax definition . 26

9 Binning 27

9.1 Description . 27

9.2 Binning tables into images . 29

9.3 Columns with integer data types . 30

9.4 Columns with real data types . 31

3

4

9.5 Binning with range and region filters . 32

10 Name-command 33

11 Fine-tuning using the opt directive 33

11.1 Description . 33

11.2 Supported options . 34

11.2.1 type: Image Data Type . 34

11.2.2 null: Image Null Value . 34

11.2.3 mem: Maximum memory to use . 34

11.2.4 full: Full image size . 35

11.2.5 update: Suppress subspace propagation 35

11.2.6 scale: Suppress FITS autoscaling . 36

12 Getting help 36

4

1. Introduction 5

1 Introduction

This document describes the CIAO DM (‘Data Model’) filtering and binning language. It
has significant overlap with the on-line ahelp files found by typing ‘ahelp dm’ in CIAO. Users
may wish to first read the User Introduction which gives simple examples, and to use this
document in conjuction with the Toolkit User Guide which describes the full DM syntax.

2 Virtual File Syntax Reference

The virtual file syntax is a way of describing a filtered version of a DM block (a single table
or image). For instance, if evt.fits is a FITS file with a binary table called EVENTS in it,

evt.fits[events][pha=10:200,det=circle(4096,4096,50)][bin det=8]

[opt null=NaN,type=r4][img8]

defines an image made by making a histogram on the ”det” vector column and putting
the results in a 4-byte real image, binning by 8 (1 output image pixel is a range of 8 in
each direction in values of the det coordinate in the input table), with the histogram made
counting only rows in the table satisfying the filter, and with pixels in the image outside the
filter circle set to NaN.

• The virtual block specification consists of a string consisting of a ‘base dataset’ name
and a series of qualifier sections. In the example, ‘evt.fits’ is the base dataset.

• Each qualifier section is a string delimited by square parentheses [].

• The possible qualifiers are:

– block identifier

– filter-command

– column select/bin-command

– name-command

– option command

Any qualifier may be omitted, but those which appear must appear in this order.

• There should be at most one of each type of qualifier in a specification.

5

3. Base dataset 6

• A virtual file specifies either a table or an image. Whether a given string is a table spec
or an image spec depends on external context, and cannot in general be determined
from the string itself.

• A column-select or bin command qualifier may be recognized by the fact that it begins
with the text ‘columns’, ‘bin’ or ‘bin/f’ followed by a space followed by further text. In
the above example, we force making an image by using the bin directive ‘[bin det=8]’.

• An option qualifier may be recognized by the fact that it begins with the text ‘opt’
followed by a space followed by further text. In the example, ‘[opt null=NaN,type=r4]’.

• A block identifier may be recognized because it consists of only a single word and is
the first qualifier. In the example, ‘[events]’.

• A name-command may be recognized because it consists of either a single word, or
a single word followed by a space and other text, and it cannot be a block identifier
because it is not the first qualifier, and it cannot be a select/bin command because the
word is not ‘select’ or ‘bin’. In the example, ‘[img8]’ is the name command.

• A filter command can be recognized because it does not match any of the other qual-
ifiers. In the example, ‘[pha=10:200,det=circle(4096,4096,50)]’ is the filter qualifier.
We could also have said more explicitly ‘[filter pha=10:200,det=circle(4096,4096,50)]’.

3 Base dataset

The base dataset identifies the input dataset (file or files).

• The base dataset name is the name of a file on disk. (Note that in the case of the
IRAF/QPOE kernel, this file may be a directory). The full filename should be given
including any extension. URLs are not currently supported.

• If no base dataset name is given and no dataset is otherwise specified to the software,
the meaning is undefined.

4 Block identifier

[name]

[#n]

6

5. Table Filtering 7

The block identifer specifies the input DM block (table or image) within the selected dataset.
Often, it’s omitted and the DM tries to guess which block in the dataset you are likely to
be interested in. When in doubt, though, you can always specify the block by name. To see
what the block names are in the dataset, use ‘dmlist filename blocks’.

• The block identifier, if present, must be the first qualifier section.

• The block identifier consists of a single word which may contain letters, digits, and the
characters . (dot), - (minus), + (plus), / (slash), (underbar), # (hash), $ (dollar),
; (semicolon). Some other characters may also be accepted, but it may not contain
whitespace or the characters comma (,), bar (|), square parens ([,]), equals (=), colon
(:).

• If the block identifier consists only of digits, (and represents an integer n which is less
than the number of DM tables in the dataset), the interpretation is that it refers to
the nth DM table in the dataset, counting from 1. The block identifer [0] is illegal.

• If the block identifier is empty, i.e. [], or not present, the first ‘interesting’ block in the
dataset is implied. For FITS, this is the first block with positive NAXIS. So in a FITS
binary table with a null primary header, the following

rh1012.fits

rh1012.fits[]

rh1012.fits[2]

are all identical.

• Otherwise, the block identifier is interpreted as the name of an DM block within the
dataset.

5 Table Filtering

5.1 Description

If the underlying block is a table, the filter directive selects rows from the table. If the
underlying block is an image, the filter selects an image subsection, discussed in a later
section of this document.

[filter nameA=min1:max1,min2:max2,...minN,maxN]

7

5. Table Filtering 8

[filter nameA=min1:max1,...minN,maxN,nameB=min1:max1,...]

[nameA=min1:max1,...minN,maxN,nameB=min1:max1,...]

[filter nameA=shape(parameters),nameB=REGION(region_filename)]

[filter @filter.lis]

[filter nameA<max,nameA>min,nameA!=val]

[filter (nameA=min1:max1)||(nameA=min3:max3,nameB=min3:max3)]

[exclude nameA=min1:max1,min2:max2,..,nameB=...]

If the words ’filter(space)’ and ’exclude(space)’ are not present, the parser recognizes the
syntax as a filter directive because of the equals sign. (With the equals sign, it can’t be a
block name; but it can’t be a cols or bin directive either because the ’col(space)’,’bin(space)’
are not optional in those cases.)

5.2 Table filtering on columns with real data type

There are a number of ways to filter a DM block (table or image in a file). In this section
we describe table filtering.To see which column names you can filter on, use

dmlist a.fits cols

to display the columns in the main block of file a.fits. The simplest kind of filter is a range
filter

[filter energy=1000:2000]

which specifies that the DM should only see rows in the input file which satisfy 1000.0 <=
energy <2000.0. You can use this filter by appending it to a filename or block name in any
of the CIAO tools:

dmcopy "a.fits[filter energy=1000:2000]" b.fits

dmcopy "a.fits[events][filter energy=1000:2000]" b.fits

Note that the string ”filter(space)” is optional:

dmcopy "a.fits[energy=1000:2000]" b.fits

8

5. Table Filtering 9

You can filter on multiple quantities:

dmcopy "a.fits[energy=1000:2000,time=5410300:5410320]" b.fits

You can also filter on multiple ranges for each quantity:

dmcopy "a.fits[energy=1000:2000,4000:8000,grade=0,2:4,6]" b.fits

This filter accepts rows which have energies between either 1000 and 2000 or 4000 and 8000,
and grades equal to 0, 2 to 4, or 6. Note that you can leave out the colon if the min and
max of a range are the same, so 0:0 becomes just 0. If you want to express ”less than” and
”greater than”, you can just retain the colon but omit the min or max:

[energy=:4000]

means accept energies up to 4000;

[detx=:511,513:]

means accept all values of detx except 511.0 <= detx < 513.0.

5.3 Table filtering on columns with integer data types

The interpretation is a little different depending on whether the table column has integer or
real data type. For an integer data type column,

[filter energy=4000:5000]

means (4000 <= energy <= 5000), in other words both ends of the range are included.

The syntax also supports the special pseudo-column #row, the row number of the unfiltered
file:

[filter #row=100:200]

9

5. Table Filtering 10

5.4 Table filtering on columns with character string data types

Filtering is a little more restricted with character string columns. You can only use the colon
syntax, for example:

[filter shape=m:n,point,rectangle,s:z]

Be careful: the range m:n includes everything beginning with m, and it includes the letter
n, but not other strings beginning with n: for example, ”ngc” is not within m:n since in an
ASCII ordering ngc >n. The comparison is case-sensitive.

5.5 Table filtering on columns with bit data type

Columns with bit data type are a special case. The most common example is the STATUS
column in the event files, which is 32 bits wide. Suppose for simplicity you instead have a
status column with only 6 bits, and wish to accept rows with the 3rd bit from the end set
and the end bit equal to zero. A simple numeric filter of the type described above would
have to be very complicated to describe all the numeric values for which these bits have the
desired values; instead, the user supplies a ‘bitmask string’:

[filter status=xxx1x0]

The string may only contain the characters 1 (corresponding bit must be set), 0 (bit must
not be set) and x (wild card: bit may have any value).

The bit pattern display convention here is that the rightmost bit displayed (with the value 0
in the example above) is the least significant bit, which is bit 32 in the usual FITS convention
and bit 0 in the usual C programmers convention.

5.6 Table filtering on vector columns using region filters

In CIAO, a ‘vector column’ is a paired column consisting of two components. For instance,
the DET vector column has components DETX and DETY. You can see which of the columns
in the file are vector columns by using ‘dmlist filename cols’. There are two ways to filter on
a vector column: define a rectangular region by filtering on each of the components as usual,

dmcopy "evt.fits[detx=4000:5000,dety=3000:4000]" rectangle.fits

10

5. Table Filtering 11

or, use a region filter (see below for the full region syntax) on the vector column, either
using its name - in this case DET - or the two components in parentheses - in this case
(DETX,DETY).

dmcopy "evt.fits[det=circle(4500,3500,120)]" circle.fits

dmcopy "evt.fits[(detx,dety)=circle(4500,3500,120)]" circle.fits

5.7 Compound filters

The syntax supports compound (logical OR) filters:

dmcopy "evt.fits[(ccd_id=2,chipx=512:513)||(ccd_id=7,chipx=500:520)]" two_bits.fits

Note that we do not support arbitrarily complex C-style logical expressions, just lists of
filters separated by ||. In particular, nested parentheses are not supported.

5.8 Exclude filters

A very useful feature is to invert a filter, excluding instead of including:

dmcopy "evt.fits[exclude sky=region(reg.ds9)]" holes.fits

dmcopy "evt.fits[exclude pha=2:100,grade=7]" clean.fits

This is particularly useful in conjunction with compound filters:

dmcopy "evt.fits[exclude (ccd_id=0:6,8:9,chipx=513,fltgrade=208)||

(ccd_id=7,chipx=512:513,fltgrade=2,64)]" better.fits

It’s very easy to make an exclude filter which results in an extremely complicated and
unhelpful data subspace (where the positive filter rather than the exclusion must be stored).
If you run into this problem, you can suppress the propagation of the subspace with [opt
update=no].

dmcopy "evt.fits[exclude ccd_id=0:6,8:9][opt update=no]" test.fits

11

5. Table Filtering 12

5.9 Filter syntax specification

A filter command is made up of filter components, which are made up of filter specifications.
Filter specifications can be either a range filter, a relational filter or a region filter. We’ll
describe the smallest items first (filter specs) and work up to the complete filter command.

5.9.1 Filter variable names

In filters, we use the names of ‘descriptors’ in the file. The choices are:

• The name of a table column, image axis, or column/axis component. Examples:

pha

sky

time

• A name beginning with the character # followed by digits, referring to a numbered
column or axis. Examples:

#1

#5

• A pair of names separated by commas and enclosed in round parentheses, thus for
example (detx,dety). This defines a 2-dimensional descriptor from two one-dimensional
descriptors or component names.

• The special name #row is allowed for a filter command in a table block only. It points
to a fake data descriptor whose value is the number of the row in the current input
block, and so supports the ability to filter on row number.

5.9.2 Range filters

The range filter

pha = 1:10,80:300,51:100

is read as: ‘the list of restrictions on pha is ...’.

12

5. Table Filtering 13

• A range filter defines a restriction on a scalar data descriptor (a column in the table
or a scalar axis in the image). It consists of the name of the descriptor followed by an
equals sign, followed by a range list.

• If the name alone is used, without an equals sign or range list, it must be a quantity
of logical data type.

• A range list is a comma-separated list of ranges.

• Each range defines a minimum and maximum value. In the most general form, the
minimum and maximum are given separated by a colon. The range is a closed interval
on the real line. Several abbrevated forms are supported:

– min:max

Range from min to max.

– min:

Range from min to the maximum legal value (TLMAX) of the quantity.

– :max Range from the minimum legal value (TLMIN) to max.

– val

A single value is equivalent to val:val, a range with only one value.

Examples:

dmcopy "rh1012.fits[events][pha=5:10,20:100]" filtered.fits

dmcopy "rh1012.fits[events][grade=0,2:4,6,status=1:]" filtered.fits

dmcopy "rh1012.fits[events][x=:5.0,10.0:]" filtered.fits

5.9.3 Image sections

A special variant of range filters is the image section syntax, when the names of the quantities
are omitted and only one range is permitted for each quantity. In this case, the quantities
are assumed to be #1, #2, etc. in order. Thus for an image

ih1012.fits[4:8,1012:1234,10:20]

is equivalent to

13

5. Table Filtering 14

ih1012.fits[#1=4:8,#2=1012:1234,#3=10:20]

If image section syntax is used, it may not be mixed with other kinds of filter command.

5.9.4 Relational filters

An alternative filter syntax

pha op value

may be read as ‘true if pha op value’.

The supported operators are

• >, greater than

• <, less than,

• >=, greater than or equal

• <=, less than or equal

• ! =, not equal to warning: may need to escape on unix command line

Examples:

dmcopy "rh1012.fits[events][pha=5:10,x>100]" filtered.fits

dmcopy "rh1012.fits[events][grade=0,2:4,6,status\!=0]" filtered.fits

Unfortunately most unix shells require you to escape the !. When using parameter prompting,
you won’t need the backslash.

dmcopy "rh1012.fits[events][pha\!=5,x<2000]" filtered.fits

Note that you can’t mix notations for a single variable, so

14

5. Table Filtering 15

dmcopy "rh1012.fits[events][x\!=5.0:10.0]" filtered.fits

isn’t allowed, to exclude a range you would have to do

dmcopy "rh1012.fits[events][x=:5.0,10.0:]" filtered.fits

instead.

You also can’t do a general relational statement with nested parentheses and logical oper-
ators; the relational syntax is provided for familiarity, but in general the colon-syntax for
specifying ranges is recommended.

5.9.5 Filter commands

• A filter specification may be either a range filter, a relational filter, or a region filter.

pha=4:10,40:80

time>400.0

(detx,dety)=circle(400,200,10)

• A filter component consists of a comma-separated list of filter specifications; the com-
plete filter component is the logical AND of all of the filter specifications.

pha=4:10,40:80,time>400.0,(detx,dety)=circle(400,200,10)

• A standard filter command consists of only a single filter component.

• A filter command is an external filter command (see below), a standard filter command,
or a compound filter command.

5.9.6 External filter commands

• An external filter command consists of the character @ followed by the name of a block
(precisely, a virtual block command with only the dataset and block ID’s), for example

rh1012.fits[events][@tmp12.fits[2]]

The data subspace of the specified block is opened and used to filter the input block.

• An external filter command may also be an ASCII file containing a valid filter specifi-
cation. For example,

15

6. Regions and region filtering 16

rh1012.fits[events][@my.filt]

where the file my.filt consists of the single line

pha=4:10,detpos=circle(54,52,2)

6 Regions and region filtering

[filter name=shape(...)]

[filter name=shape1(...)*shape2(...)+shape3(...)]

[filter name=field()-shape(...)]

[filter name=region(file)]

Regions are two dimensional filters that can be used to include or exclude data from a given
file. They may be applied to any ‘vector column’ in the file.

Regions are made up of a number of shapes that are described below. The shapes can either
be inclusive or exclusive. The different shapes can then be combined using either a boolean
AND or boolean OR operation which leads to a degree of flexibility to design arbitrary
regions.

The following region shapes are defined (see below for detailed explanation)

BOX(xcenter,ycenter,xlen,ylen)

ROTBOX(xcenter,ycenter,xlen,ylen,angle)

CIRCLE(xcenter,ycenter,radius)

RECTANGLE(xmin,ymin,xmax,ymax)

ANNULUS(xcenter,ycenter,iradius,oradius)

ELLIPSE(xcenter,ycenter,xradius,yradius,angle)

POINT(xcenter,ycenter)

SECTOR(xcenter,ycenter,minangle,maxangle)

PIE(xcenter,ycenter,iradius,oradius,minangle,maxangle)

POLYGON(x1,y1,x2,y2,x3,y3,...)

FIELD()

Shape arithmetic (boolean operation) is supported with the * (or &) operator which gives
the intersection of two regions, the + (or |) operator which gives the union of two regions,
and the - (or !) operator which gives the inverse of a region.

The FIELD() shape is given to allow you to exclude regions using

16

6. Regions and region filtering 17

dmcopy evt[sky=field()-circle(4096,4096,20)] out.fits

which is equivalent to

dmcopy evt[exclude sky=circle(4096,4096,20)] out.fits

For the polygon shape, if the last point is not equal to the first point, another point will be
added onto the end to close the polygon.

The syntax also supports the ”region(file)” directive, which can read in ASCII region files
produced by DS9, SAOImage, SAOtng, and PROS. Note that ds9 can write out region files
in any of these formats. It can also read ASC-FITS REGION files. Also note that the
region(file) directive cannot be mixed with other shapes.

6.1 Issues with CIAO regions

There are several subtleties with CIAO regions that are worth noting. These arise particu-
larly when using region files made by imagers like DS9.

6.1.1 Celestial coordinate regions

In order for a CIAO tool to make use of a region in world coordinates, e.g.

circle(06:37:11,-40:20:00,5’)

it must know about the mapping between world and physical coordinates for the dataset
in question. Not all CIAO tools have this ability yet. If you have problems with celestial
coordinates, try using a region in physical pixel coordinates instead.

DS9 region files saved in celestial coordinates in degrees are not currently supported in CIAO;
celestial coordinates are only recognized in sexagesimal format.

6.1.2 Stacks of single-shape regions versus regions with many shapes

It’s important to understand the difference between two concepts: the REGION STACK
and the REGION FILE.

17

6. Regions and region filtering 18

A region file defines a single ’region’ which may have multiple shapes. For example, a region
file with

circle(4096,4096,20)

+circle(5000,2000,100)

is a single region consisting of two circles. Applying a region file to some data lets CIAO
decide whether points are in the region, but no knowledge is returned about which of the
shapes a point is in.

A region stack contains multiple regions. CIAO will figure out each of the regions separately.
The most common use of region stacks is in dmextract, where binning on a region stack
creates a histogram where each bin corresponds to one region.

The syntax is

dmextract "evt.fits[bin sky=@reg.stk]" ...

to operate on a region stack and make a histogram of counts versus region. In contrast,

dmextract "evt.fits[bin sky=region(reg.stk)]" ...

specifies a single (albeit complicated) region, which will generate a single output bin.

6.1.3 Includes and Excludes

The CIAO syntax requires excluded regions to follow included regions. If you draw four
circles on DS9, two includes and two excludes, and then save the region, the resulting file
depends on the order the regions were drawn. If the order is -circle+circle-circle+circle,
CIAO will not understand because of the leading -circle.

Note that

+circle(4096,4096,1000)

-circle(4096,4096,250)

+circle(4096,4096,50)

will have the inner 50-radius circle included, and the 50-250 radius annulus excluded, but

18

6. Regions and region filtering 19

+circle(4096,4096,50)

-circle(4096,4096,250)

+circle(4096,4096,1000)

will include everything, as it’s interpreted as ”(R50 minus R250) OR R1000”, and the R1000
includes everything. Therefore, you must be careful about order when generating region files
in DS9.

6.1.4 Elliptical Annuli

CIAO doesn’t understand the format DS9 uses for writing elliptical annuli, or for writing
grids of annuli.

6.1.5 Region Areas (BACKSCAL)

For simple regions, the area can be calculated using analytical methods. For complicated
regions where shapes overlap, or are close enough that it’s not obvious they don’t overlap, we
must use a different method; CIAO divides up the area into bins (which may be smaller than
a single pixel) and counts the number of bins which pass the test ’am I inside the region?’.
This approach using discrete bins has a finite error, which is usually of order one percent of
the area. CIAO2.2 is a bit smarter than CIAO2.1 and manages to do a better calculation in
many cases, but in other cases the effect of the approximation may still be noticeable.

Region areas are most commonly used in the BACKSCAL keyword added to PHA/PI spec-
tral files generated by dmextract. The error in the area is almost always small compared to
other calibration uncertainties.

Be particularly careful when making regions comparable in size to the pixel size. When
applying such a region to a table which contains fractional pixel positions, filtering does
occur in exactly the area specified, although the user should be careful about interpretation -
for instance, the true radial profile of a source may be blurred by aspect, PSF and instrument
pixelization. When applying the region to an image file, filtering will accept all the counts in
a pixel if the pixel center is within the region, and none of them if the pixel center is outside
the region; therefore, the effective area sampled is not quite the same as the area calculated.

6.2 Examples

my_tool parameter="file.ext[EXTENSION][sky=circle(10,10,20)]"

19

6. Regions and region filtering 20

Filter the file, a table, on the X and Y columns that includes only the data inside the circle
described above. For a table you must specify which two columns to use (or which vector
column).

Note that ”sky” is the name of a vector column in the file and translates to ”(x,y)”.

Note also that the default behavior is to exclude the entire field and then start adding to it.

my_tool "foo[field() * !circle(30,40,10)]"

Filter the file ”foo”, an image, by including the entire image and then excluding a cir-
cular region (e.g. remove a source from the field). For an image with this syntax, the
region is assumed to be in logical coordinates. The syntax is short hand for the more
formal ”foo[(#1,#2)=field()*!circle(30,40,10)]” To specify physical coordinates instead, use
”foo[(x,y)=circle(30,40,10)]”.

my_tool "foo[(energy,time)=region(ds9.reg)]"

Filter the file on the energy and time columns with the region stored in the file ds9.reg.

6.3 Syntax definition

• A region filter consists of a name followed by an equals sign followed by a region
expression. The name must refer to a two-dimensional quantity.

• A region expression is a set of region elements joined with logical region operators: ‘&’
or ‘*’ performs a logical AND. ‘|’ or ‘+’ performs a logical OR.

An element can be proceeded by an ‘!’ or ‘-’ to indicate that the area contained in the
shape is to be excluded rather than included. However the first element in a region
filter must not begin with ‘-’.

dmcopy "acis_evts.fits[sky=field()-circle(4096,4096,100)]" background_evt.fits

will copy all events from the field() region but will exclude events from the circle()
region.

20

6. Regions and region filtering 21

• The region elements define shapes in a two-dimensional plane. Each region element
has two forms: the element name followed by round parentheses containing a comma-
separated list of parameters, or the element name followed by a space-separated list of
parameters terminated by a comma, a region operator, or the closing square parenthesis
of the qualifier. Each region element name also has an abbreviated form. Coordinates
can be given in pixels or hh:mm:ss.s, dd:mm:ss.s. Radii are in pixels or arcminutes
(with ′, e.g. 7′). Angles are in degrees. Example: sky=circle(14:09:27,-00:02:33,5.3′).

21

7. Image Filtering 22

• Allowed region elements are

field() the whole image
circle(xcen,ycen,radius) Center (xcen,ycen) with given radius
ellipse(xcen, ycen, rad1, rad2) rad1 and rad2 are the semi-major and -minor axes
annulus(xcen, ycen, rad1, rad2) rad1 and rad2 are the inner and outer radii
box(xcen, ycen, xlen, ylen) xlen and ylen are the width and height of the box
rotbox(xcen, ycen, xlen, ylen, angle) Same as box, but rotated through given angle

in degrees
rectangle(xmin, ymin, xmax, ymax) Like box, but specify lower left and

upper right corners
rotrectangle(xmin, ymin, xmax, ymax, angle) Like rectangle, but rotated
point(xcen, ycen) A single point
pie(xcen, ycen, rad1, rad2, angle1, angle2) An annular sector, with inner and outer radii

and angles measured counterclockwise from +X
sector(xcen, ycen, angle1, angle2) Like pie with rad1 = 0 and rad2 = infinity
polygon(x1,y1, x2,y2,....,xn,yn) List of points to make closed polygon
region(filename) ASCII region file

Examples:

dmcopy "acis_evts.fits[sky=region(saoimage.reg)]" out.fits

will read an SAOImage/DS9 or ASC-FITS region file with name ”saoimage.reg”.

7 Image Filtering

[filter nameA=min1:max1,nameB=min2:max2]

[filter #1=min1:max1,#2=min2:max2]

[min1:max1,min2:max2]

[filter nameA=shape(parameters),nameB=REGION(region_filename)]

[filter name=REGION(region_filename)][opt full]

[filter @filter.lis]

[shape(parameters)]

In the DM, an ‘image’ is a single N-dimensional rectangular array of data together with its
metadata (header info, coordinate systems, etc). The concept maps closely to a single FITS
image file, although in future releases we expect to be able to treat the contents of table
array columns in the same way.

22

7. Image Filtering 23

Although an image may have 1, 2, 3, or more dimensions, we provide special support for the
case of a 2-dimensional image, and the examples below assume such an image.

7.1 Image coordinates

One complication with images is the distinction between the actual pixels of the image (which
we call ‘logical’ coordinates, and the DS9 display program calls ‘image’ coordinates) and the
original pixels (which we call ‘physical coordinates’) of the data from which the image was
created. Sometimes these are the same, but often we make images at reduced resolution.
For example,

dmcopy "evt2.fits[bin detx=3000.5:5000.5:2.0,dety=4000.5:6000.5:2.0]" by2.img

makes an image which is 1000 x 1000 pixels in size. Its logical pixel numbers then run from
1 to 1000, and so the logical coordinate values run from 0.5 (left hand edge of first pixel) to
1000.5 (right hand edge of last pixel).

To distinguish beween the logical and physical systems, we use the notation ”#1,#2,..” to
denote the 1st, 2nd.,... logical coordinate axes, and actual variable names ”detx,dety,..” etc.
to denote the corresponding physical axes. Non-CIAO FITS images without axis names are
given the default physical axis names X,Y,Z (if N is up to 3). To see the physical axis names
on your image, do

dmlist by2.img cols

In this example, logical pixel #1=0.5 corresponds to physical pixel x=3000.5.

7.2 Image filtering on logical coordinates

To filter an image on its logical coordinates,

dmcopy "im.fits[#1=257:512,#2=1:100]" subset.fits

pulls out a 256 x 100 subset of the image.

dmcopy "im.fits[(#1,#2)=circle(145,356,25)]" circle.fits

23

7. Image Filtering 24

sets everything outside the specified circle to zero. The default behaviour of a filter like this
is to also shrink the resulting image to be as small as possible surrounding the circle. To
suppress this behaviour, and get a big, almost empty, image (the same size as im.fits) with
a small circle in the middle, use the ”opt full” modifier as shown below:

dmcopy "im.fits[(#1,#2)=circle(145,356,25)][opt full]" circle.fits

7.3 Image filtering on physical coordinates

To filter on the original physical coordinates, we refer to the physical axis names:

dmcopy "im.fits[x=4096.5:4213.5,y=4142.3:6120.1]" subset.fits

You can also use a region filter:

dmcopy "im.fits[(x,y)=circle(4096,4096,12)]" circle.img

This will give you a square image bounding the given circle, and set to zero all pixels outside
the circle. If you wish to mark these pixels as ”invalid”, you can use the ”opt null” syntax
described in ”ahelp dmopt”:

dmcopy "im.fits[(x,y)=circle(4096,4096,12)][opt null=-999]" circ2.img

Note that not all programs will recognise that such pixels are to be ignored, although both
ds9 and dmstat do.

7.4 Image filtering on world coordinates

You can also use world coordinates in a region filter:

dmcopy ’im.fits[(x,y)=circle(11:03:28.4,-20:11:23.2,20.1\")]’ circ.img

However, you can’t use the world coordinates when filtering on a one dimensional range -
i.e. [x=11:03:28.2:11:03:32.1] won’t work, you would have to do use ”(x,y)=rectangle(...)”
instead (and of course, x and RA are not quite parallel in the tangent plane projection).

24

8. Column selection 25

Using (x,y) is a bit of a cheat in the syntax; we should really use (RA,Dec) to signal to the
DM that world coordinates are being used, which would let us also support entering those
world coordinates in decimal degrees. That will probably be added in a later release.

8 Column selection

8.1 Description

The select command selects columns for an output table. For an image, it specifies the
names and ordering of output axes, and is interpreted as a bin command. A bin command
and a select command may not be present in the same virtual block specification.

[cols name1,name2,...]

[cols #1,#4,...]

[cols -name1,-name2]

[cols newname1=name1,newname2=name2,...]

The DM virtual file syntax lets you pick out selected columns from a table.

dmcopy "evt.fits[cols time,pha]" tmp1.fits

makes a file containing only the columns time and pha.

dmstat "evt.fits[cols grade]"

passes to dmstat a virtual file containing only the column called ”grade”.

dmcopy "pi.fits[cols rate=count_rate]" npi.fits

renames the column count rate to be simply rate.

dmstat "evt.fits[cols #3]"

25

8. Column selection 26

passes to dmstat a virtual file containing only the third column in evt.fits (where ‘column’
is used in the DM sense, in which sky(x,y) is a single ”vector” column; use ”dmlist evt.fits
cols” to find the column numbers).

You can also exclude columns:

dmcopy "evt.fits[cols !status]" tmp1.fits

dmcopy "evt.fits[cols -status]" tmp1.fits

makes a file without the status column. The first form needs to be typed as ”” in the Unix
shell, so the second form may be more convenient.

dmlist "evt.fits[cols ra,dec]" data

or dmlist "evt.fits[cols eqpos]" data

lists the values of pseudo-columns RA and DEC, which are coordinates defined on the
sky(x,y) column. You can find the names of the coordinate systems defined for a file by
using the ’cols’ option to dmlist:

dmlist evt.fits cols

and then using these coordinate system names in a DM [cols ...] qualifier lets you turn
them into actual columns. Note that in release 2.2, the coordinate names work in the [cols
...] qualifier but not in the filtering and binning qualifiers. If you want to explicitly filter
on a coordinate, you must first use dmcopy with [cols *,ra,dec] to explicitly create the new
columns and then filter the resulting file.

8.2 Syntax definition

• The select command is recognized by the parser as a qualifier which begins with the
word COLUMNS (or COLS) followed by a space followed by other text.

• The select text consists of a comma separated list of column specifications.

26

9. Binning 27

• The reserved column specifications #all (synonym *) and #none (synonym -) denote
selection of all of the columns of the input table or none of them respectively.

• Omitting the select command is equivalent to [columns *].

• The column specification newname=oldname renames a column from oldname to new-
name.

• The column name #n, where n is an integer, denotes the nth column in the base block.

• A column specification is the name of a column or of a coordinate system (which is
promoted to a column in the virtual file).

• The specification !name means delete that column. It is only useful when no other
columns are positively selected. Thus

rh1012.fits[events][columns !pha,!status]

rh1012.fits[events][columns *,!pha,!status]

each make a table with all the columns of [events] except pha and status, but

rh1012.fits[events][columns time,!pha,!status]

makes a table with only time, and the !pha,!status commands are redundant.

9 Binning

9.1 Description

Summary:

[bin nameA=min:max:step]

[bin nameA=min:max:#bins]

[bin nameA=min:max:step,nameB=min:max:#bins]

[bin/f nameA=min:max:step,nameB=min:max:step]

[bin vname=step]

By ‘binning’ we mean making n-dimensional histograms of a quantity. A typical binning
operation is to define a 2-dimensional image by taking two columns of values, say x and y,
from a table and histogramming them; each pixel in the image corresponds to a range in x

27

9. Binning 28

and y, and the pixel value is equal to the number of entries in the table whose x and y lie in
that range. The binning directive can also be used to rebin an existing image to a new pixel
size.

For example: Consider a small table with three columns A, B, C and five rows:

Row A B C

1 1.0 2.1 1.8

2 2.8 1.2 4.2

3 2.5 1.3 4.1

4 3.6 2.0 0.3

5 2.0 2.2 5.1

We can ”bin on A and B” by making a two-dimensional histogram, thinking of A and B as
spatial coordinates. The DM directive

[bin A=0.5:3.5:1,B=0.5:3.5:1]

is read ”bin A from 0.5 to 3.5 in steps of 1, and B from 0.5 to 3.5 in steps of 1”. This
generates a 3 x 3 grid in which the lower left bin runs in A from 0.5 <= A < 1.5, and so has
center (1.0, 1.0). If we take the table above we obtain the array (as it would be seen in an
image display tool)

A=1 2 3

B= 3 | 0 0 0

B= 2 | 1 1 0

B= 1 | 0 0 2

We can make a coarser or finer grid by altering the step size since row 1 falls in bin (1,2),
row 2 falls in bin (3,1), and so does row 3 (because the A=2.5 is rounded up), and row 5
falls in (2,2). Row 4 is outside the grid and so is discarded; and because we are binning on
A and B, the information in the C column is discarded. This process is how we turn event
lists into images,

dmcopy "evt.fits[bin x=0.5:8192.5:4,y=0.5:8192.5:4]" img.fits

or (in the 1-dimensional case) light curves or spectra.

28

9. Binning 29

dmcopy "evt.fits[bin time=74321940.2:74328100.0:10.0]" lc.fits

dmcopy "evt.fits[bin energy=1000:7000:10]" energy.fits

dmextract "evt.fits[bin pi=1:1024]" standard.pha.fits

9.2 Binning tables into images

• A binning directive starts with the word ’bin’ or ’bin/f’, followed by a space, followed
by the binning list.

• The binning list is a comma-separated list of binning specifications, each of which
defines one axis or axis group.

• The simplest kind of binning specification is a name. The name specifies that that axis
is next in the ordering. If the base block is a table, the corresponding column will be
binned on.

• The name may be followed by an equals sign and a binning. The binning specifies a
start value, a stop value and a step size in the form min:max:step; alternatively, the
number of bins may be given instead of the step size, in which case this number is
preceded by a hash sign. The defaults are TLMIN, TLMAX and 1.0. Alternate forms
supported are:

– min:max:step

– min:max

– min:

– :max

– step

– ::step

– min::step

– :max:step

– min:max:#nbins

The only potential parsing confusion is with the case with no colons, where there is
conflict with a column/axis name whose name is the same as the step size. For instance,
does

rh1012.fits[bin pha=4]

mean ’bin pha by 4’ or ’bin a column called ’4’ by 1 and rename it pha’? Another
good reason to not give columns numeric names. In this case we will require columns

29

9. Binning 30

in the binning spec to not have numeric names - if you do have such a column, you’ll
have to use the #n notation to reference it.

For vector columns, you should specify the binning separately for each component if a
min and max are required:

[bin x=0.5:8192.5:4,y=0.5:8192.5:4]

but if the full range is selected and only a step size is specified, the vector column name
may be used:

[bin sky=4]

If no explicit binning is given, a default binning will be used. For an unfiltered table
column, the axis will extend across the full valid range (FITS TLMINn to TLMAXn)
in steps of size 1.0. Example:

evt.fits[events][bin pha,time]

makes a pha versus time image.

If the table column has been filtered, the resulting image will be shrunk to match the
filter. In particular,

evt.fits[events][sky=circle(4096,4096,200)][bin sky=4]

will make an image just big enough to contain the radius 200 circle that has been
filtered on (it will be 100 x 100 binned pixels in size). Of course, image arrays have to
be rectangular (by the definition of a matrix) - the fact that pixels outside the circle
are not valid data is encoded in the data subspace. They are set to zero by default,
but this can be changed using the [opt null=value] directive.

Sometimes it is important to retain the original range of the variable without shrinking
the output, even if that results in a lot of blank space in the image. The bin/f directive
(for “bin/full”) forces the full size to be used:

evt.fits[events][sky=circle(4096,4096,200)][bin/f sky=4]

9.3 Columns with integer data types

For columns of integer data type, the directive

[bin x=1:1024:2]

30

9. Binning 31

is taken to be inclusive, that is 1 <= x <= 1024, so that the first bin consists of x=1 and
x=2.

You can omit any or all of the three values (min,max,step) in the binning specification. The
default value of the step size is almost always 1.0 (it is possible to set another default in the
data file by adding a TDBINn keyword to the header), so [bin x=1:1024] is the same as [bin
x=1:1024:1]. The default values of the min and max are found from the descriptor ranges
in the data file (for FITS files, these are the TLMINn/TLMAXn keywords). These default
values are displayed when you type ’dmlist filename cols’. If you have a column for which
the descriptor ranges are not set, the DM can’t guess a default and you must use an explicit
range.

If the defaults are present in the file, then [bin x] will select the default values; [bin x=::2]
will select the default range with a step size of 2; [bin x=2] is accepted as a synonym for
this. To use one default, [bin x=:512] or [bin x=12:] or [bin x=12::1] are all acceptable.

Another layer of defaulting is provided by the mission database file cxo.mdb, which currently
defines standard binning for PHA spectral extractions. In the current release, the only
program that recognizes this file is dmextract (see the defaults parameter of dmextract).

Note that you can use a real-valued binning factor, which may be less than one: [bin x=::0.5]
makes a double resolution image.

If you specify a bin size which doesn’t divide evenly into the binning range, the last bin will
be ‘incomplete’. For instance, [bin x=1:10:3] creates four bins (1:3),(4:6),(7:9),(10:12), but
the final (10:12) bin will only include contributions from rows with x=10.

An alternate syntax to specify the total number of bins instead of the bin size is [bin
x=1:1000:#20], which says ”bin from 1 to 1000 making a total of 20 equal size bins”.

9.4 Columns with real data types

For columns of real data type, be careful when binning coordinate values. The ACIS sky
coordinate space runs from 0.5 to 8192.5, for a total of 8192 pixels; pixel (512,512) runs from
511.5 to 512.5 in each axis. Binning [x=1:3:1] makes only 2 bins: (1.0:2.0) and (2.0:3.0);
contrast this with the integer-column case where three bins are made: (0.5:1.5), (1.5:2.5),
and (2.5:3.5).

Otherwise, the syntax is the same as for integer columns.

31

9. Binning 32

9.5 Binning with range and region filters

Frequently you may wish to combine filtering and binning. For example,

dmcopy "evt2.fits[ccd_id=7][bin chip]" chip7.img

makes an image in chip coordinates, first filtering the event list to accept only events on ccd
7.

Usually you won’t filter on the same columns that you’re binning on; it’s sufficient to set the
range:

dmcopy "srclist.fits[flux=100:200][bin flux]" flux_hist.fits

while perfectly valid, is better expressed as

dmcopy "srclist.fits[bin flux=100:200]" flux_hist.fits

In the CIAO1 release, there was a significant difference: the first of these forms would give
you an output image over the full default range of the variable ’flux’, instead of just the
range of interest 100:200, with zeroes in the image outside that range of interest. Sometimes
you may actually want this, when you are planning to sum or match different images. As
discussed above, the special syntax bin/full or bin/f reproduces the CIAO1 behaviour:

dmcopy "srclist.fits[flux=100:200][bin/f flux]" flux_hist.fits

This is particularly relevant when applying sky region filters:

dmcopy "evt2.fits[sky=circle(4096,4096,100)][bin sky]" circle1.fits

makes a 201 x 201 pixel image with all the pixels outside the circle set to the null value
(default zero). However,

dmcopy "evt2.fits[sky=circle(4096,4096,100)][bin/f sky]" circle1.fits

makes an 8192 x 8192 pixel image (the default range of SKY) with all the pixels outside the
circle zero (this was the standard CIAO1 behaviour).

32

10. Name-command 33

10 Name-command

The name-command allows the user to specify the name of the virtual block. (This only
works for a simple block renaming at the moment):)

• For a virtual table specification, the name command must be a simple name, which
names the virtual table block.

• If the name command is absent, the virtual block has the same name as the input
block.

• If the name command is present, another qualifier must also be present to avoid am-
biguity with the block identifier. Thus

rh1012.fits[events]

specifies an input block name, while

rh1012.fits[][events]

specifies a virtual block name.

11 Fine-tuning using the opt directive

11.1 Description

The [opt ...] qualifier in the DM virtual file syntax lets you control special details of the
virtual file.

[opt name=value,...]

For example,

dmcopy "evt.fits[sky=circle(4096,4096,200)][bin sky][opt null=-99.0,type=r4]" new.img

makes an image file of data type 4-byte real in which the pixels outside the filter circle are
set to a value of -99.0.

33

11. Fine-tuning using the opt directive 34

11.2 Supported options

11.2.1 type: Image Data Type

[opt type={value}]

This option, used when binning a table to an image, forces the output data type. Supported
values are i2,i4,r4,r8 for 2 and 4 byte integers and 4 and 8 byte reals. The default value is
i2.

11.2.2 null: Image Null Value

[opt null={value}]

An image array is by definition rectangular, but we often want to make an image including
only data from, e.g., a circular region. The pixels in the output image outside the circle
are not valid. When copying an image through a filter, or binning a table to an image, this
option controls the value of pixels which lie outside the filtered area. The default behaviour
is to set these pixels to zero; [opt null=...] sets them to a specified value, which of course
must be of the same data type as the output image.

The special value ”NaN” is supported, but is only valid if the output image is of real data
type:

dmcopy "evt.fits[sky=circle(4096,4096,200)][bin sky]

[opt null=NaN,type=r4]" nan.img

11.2.3 mem: Maximum memory to use

[opt mem={value}]

Set the maximum memory used for a virtual image, in megabytes. The DM has an internal
default limit on the size of a binning operation; this prevents users from accidentally com-
manding the DM to create a many-gigabyte image on a machine which only has a hundred
megs of memory. If you really want to create a big image, you use this option to override
the internal default. Example:

dmcopy "evt.fits[bin sky=4][opt mem=100]" big.img

34

11. Fine-tuning using the opt directive 35

11.2.4 full: Full image size

[opt full]

Binning a filtered table to an image will by default select the smallest image size that can
contain the filtered data. Thus

dmcopy "evt.fits[sky=circle(4000,4000,100)][bin sky]" circ.img

is equivalent to

dmcopy "evt.fits[sky=circle(4000,4000,100)][bin x=3900:4100,y=3900:4100]" circ.img

rather than the full field image

dmcopy "evt.fits[sky=circle(4000,4000,100)][bin x=0.5:8192.5,y=0.5:8192.5]"

circbig.img

If you explicitly want to retain the full field even though most of it will be empty (or with
values set by the [opt null=value] command) you can use either the bin/f command, or its
equivalent the ‘opt full’ directive:

dmcopy "evt.fits[sky=circle(4000,4000,100)][bin sky][opt full]"

circbig.img

11.2.5 update: Suppress subspace propagation

[opt update=no]

For complicated exclude filters, the process of updating the data subspace may be long and
not very helpful. The update=no option suppresses recording of the current filter:

dmcopy "evt.fits[sky=region(nasty.reg)][opt update=no]" nasty.fits

35

12. Getting help 36

11.2.6 scale: Suppress FITS autoscaling

[opt scale=no]

The default behaviour in the current DM release is to automatically apply internal
(BSCALE/TSCAL) scaling for FITS files. This option turns off the scaling, allowing ac-
cess to the raw values.

12 Getting help

If you can’t find what you need in this document, try the threads page at
asc.harvard.edu/ciao, and if that fails send email to ascds help@cfa.harvard.edu.

36

