
CXC-DM-002

CXC Data Model

Vol. 2

Data Model Abstrat Design

Jonathan MDowell

Chandra X-ray Center

Otober 22, 2001

Contents

1 Introdution 4

1.1 Overview of the Model . 4

1.2 What is a Data Model? . 4

1.3 Summary of motivation . 6

1.4 Problems and Solutions . 6

1.5 Informal Introdution to the Data Model . 9

1.6 Table olumns . 9

1.7 Table Attributes . 10

1.8 Binned Data . 10

1.9 Arrays and Images . 10

1.10 Desriptors and Elements and Components . 10

1.11 Staks . 11

2 Some general requirements 13

2.1 Data Model and �les . 13

2.2 Compatibility Requirements on FITS kernel . 13

2.3 The native data model in FITS . 13

2.4 Interation of Data Model and other infrastruture . 15

3 The CXC Data Model, SDS Version 2.0 15

3.1 DM Table . 17

4 Table Data Setion 17

4.1 Table Data . 17

4.2 Desriptor . 19

4.3 Array Dimensions . 23

4.4 Array Axis . 23

4.5 Axis Groups . 23

4.6 Parent Desriptor . 24

4.7 Coordinate Transform Desriptor . 24

4.8 Column Data Desriptor . 27

4.9 Interval type . 27

4.10 Elements . 28

4.11 Region Desription . 30

4.12 Table Data Cell . 30

4.13 Table Row . 30

4.14 Desriptor Groups . 30

5 Data Subspae 31

5.1 Introdution . 31

5.2 Unions of subspaes . 32

5.3 General de�nition . 33

6 Header 37

6.1 Key Data Desriptor . 37

6.2 Grouping Desriptors . 38

2

7 DM Images 38

7.1 Images and Tables . 38

8 Case studies and examples 38

8.1 FITS ase study: PSPC o� axis histogram �le . 38

8.2 Case Study: Baryenter Corretion Algorithm . 49

3

1 Introdution

The Siene Data Systems Group at the Chandra X-ray Center (CXC) developed the CXC Data Model (DM) as

a generi data model for astronomial data, underlying the CIAO data analysis system and Chandra proessing

pipelines.

This doument desribes the design of version 2 of the DM developed in 2001.

1.1 Overview of the Model

Our data model has a number of high level goals:

� Create data �les whih are more fully self-desribing, while retaining bak ompatibility in the sense that

existing arhival FITS �les will be interpreted orretly.

� Systematize the treatment of data �ltering, units, and oordinate systems, unifying the urrent approah whih

involves a large number of speial ases.

� Allow programs to use both FITS and native IRAF �le formats interhangeably, by supplying a format-

independent interfae layer.

� Allow users to write their own programs easily by providing a subroutine interfae whih makes aessing the

data easy and removes the need for the user to worry about the details of the �le format.

� Support advaned virtual �le and �ltering operations by providing a uniform onvention for reording the way

a �le has been �ltered.

The intent of the model is to desribe an abstrat representation of a generi astronomial dataset and to layer

extra struture onto existing �le formats to make them more fully self-de�ning. Our datasets inlude both binned

(image) and tabular data, orresponding to the IRAF IMH and QPOE formats or the FITS IMAGE and BINTABLE

formats. In this doument I will make expliit parallels to the FITS format sine it is the externally de�ned export

and exhange format. An important aspet of the design presented here is that existing FITS �les will be interpreted

orretly by the data model. This is ahieved through areful use of default values for keywords in the mapping to

FITS.

1.2 What is a Data Model?

A data model is an abstrat desription of our datasets. (Datasets may be �les, or groups of �les that we want to

onsider as a unit). It tells us the di�erent properties and attributes a dataset an have (e.g. `a dataset onsists of a

header and a table or an array; a table has n olumns eah with a name, a data type, a unit, ' ... et.) This desription

of the data is possible beause all of our many di�erent datasets an be thought of as speial ases of a very small

number of basi types of dataset. In using the data model to desribe a dataset, then, we have a way of de�ning

that dataset whih makes expliit its di�erenes from all other datasets. Furthermore, the data model ontains no

information about the storage format of the data. Thus our de�nition of the struture of a dataset is ompletely

separated from the way in whih that struture is implemented on disk - we distinguish between information that is

truly part of the sienti� data and information that is bookkeeping or spei� to the �le format. This makes it easy

to support multiple �le formats with the same data model. The data model an be implemented as an API whih

lets you aess and manipulate the data using the onepts of the data model.

The data model gives the appliation writer an interfae to the data whih is independent of the details of the �le

format. It also provides a standardized struture and language whih brings out the similarities between di�erent

kinds of dataset. This standardization is an important advane beyond the standardization provided by partiular

data formats suh as FITS.

4

� We make the treatment of the data independent of the hoie of disk �le data format, thus allowing the

algorithm to onentrate on the siene and making it easy to support the open arhiteture of di�erent data

formats. It means that appliations writers don't have to worry about the spei�s of the data format, those

are hidden in the interfae subroutines.

� The model layers extra struture onto the onepts impliit in the underlying data formats.

� We desribe all data in a ommon struture; by imposing a uniform desription we an support generi tools.

We have a way of desribing a general data �le independent of the spei� struture of the �le (PHA �le, event

�le, et). This means that when you make a new kind of �le, existing tools an still do something with it.

FTOOLS does this at a ertain level, allowing basi �ltering of generi tables, and an be thought of as having

a very simple data model onsisting of table olumns with no extra attributes. Our software will go well beyond

this, dealing with oordinate systems and other auxiliary quantities in a standardized way.

� Further, all this makes the data more self-desribing.

� We expliitly tie information relating to eah image axis or table olumn to that axis or olumn. In FITS, there

is some of this: a keyword like CRVAL4 tells you the oordinate value for axis number 4. However, there are a

lot of other keywords that don't do this and ould - for instane, TSTART gives the start time for a dataset,

but there is no expliit expression of the fat that this quantity is related to the TIME olumn in the data.

The FITS kernel to the DM understands this partiular assoiation, and puts it into the DM struture whih

allows a generi assoiation of a range of values with a olumn.

� Note that a single data model table may orrespond to many FITS tables. For instane, the Good Time

Intervals, whih in the data model are just the ranges for one axis of the data subspae, have to be kept in a

separate table in the FITS �le. At the moment FITS �les often have an assortment of tables in them, some

of whih are related to eah other and some of whih aren't. Using a data model helps us make muh more

sensible deisions about whih FITS tables to group together in a single �le. For instane, for an EVENT �le

it helps us realize that the Good Time Intervals are truly just an auxiliary piee of information desribing the

main table, while ROSAT Temporal Status Intervals are (at least on the data model I present here) a separate

data objet that has meaning separately from the EVENT data.

� The onept of a data subspae lets us unify the treatment of good time intervals, spatial regions, and �lter

ranges. This makes these onepts independent of whether a partiular olumn ontains temporal, spatial or

spetral info, and lets us be muh more systemati about asking the question `to what range of data values

does this dataset apply?'.

� Grouping together of header keywords helps us propagate related info more easily, makes it easier to speify

the de�nition of new �les in terms of old ones, and improves user readability of headers.

� The existene of a data model helps us inlude support for new features (e.g. unertainties) in a systemati

way, so we don't have to deal with hundreds of speial ases eah time. This applies both to the new features

we add now and to future features in later versions of the model - in other words, having an overall data model

redues overhead in inluding new funtionality, beause it's lear how to add that new funtionality in a way

that will work throughout the system.

� The separates out the siene desription from the details of a data format, allowing us to de�ne lean mappings

to di�erent data formats. This makes it easier to support new data formats, sine the I/O is so well isolated.

How an we be all things to all systems? The ruial idea is the onept of a data model. By this we don't

mean a model of a spei� dataset, like a spetral �tting funtional model, we mean a model of the onept of

5

astronomial data. More spei�ally, we mean an abstrat desription of the struture of our data separate from its

implementation in a partiular disk storage format. We note for the software-literate that this abstrat desription

an be - but does not need to be - given a manifest software implementation as an objet or set of objets in an

objet-oriented language. One we have our data model, we an map it to the partiular disk data formats we wish

to support. This allows the same ode to read FTOOLS FITS �les or PROS QPOE �les and `see' them (after a

translation layer) as idential soures of information. The individual tool will not usually need any expliit `if FITS

then' ode, and will not even know what type of �le is being read.

In priniple suh a data model ould be arbitrarily omplex with many speial ases. Atually it turns out that

almost all our data an be desribed by a single kind of objet, perhaps with a few simple avors. This fat is

what gives FTOOLS its strength: muh X-ray data analysis an be aomplished by fairly general manipulations of

FITS binary tables. We take FTOOLS' advane one step farther by separating our uni�ed data desription from the

spei�s of the FITS format (2880-byte bloks, indexed keywords, storing the struture of the main data as header

keywords, no units on keywords, et), whih are not relevant to any of the siene algorithms. This separation turns

out to be extremely powerful, and allows us to do a lot more than just support multiple data analysis ontexts.

The existing pakage tool kits (FDUMP, TPRINT, et..) will work on our �les but may lose the extra layers of

meaning provided by our data model. We therefore provide a new set of infrastruture tools whih will do generi

operations on our �les. We have uni�ed and extended the PROS onepts of �lters, regions and good time intervals

into a single seletor onept; this greatly inreases the exibility of �ltering.

1.3 Summary of motivation

By generalizing our approah, we an get by with fewer distint tools. By writing the tools using our data model,

and modern software approahes (areful layering, self-desribing data, et.), we an make eah tool more exible,

able to do sensible things with data that is in slightly di�erent formats, or even data representing entirely di�erent

physial quantities. We try and strip the algorithm to its bare bones and enode the spei�s of the data in the self

desribing data �les, not in the ompiled ode. By designing in low level support for operations on multiple data

�les, we make easier the task of doing the same operation aross suh sets of data �les and, if desired, ombining the

results. The existene of a uni�ed data model makes ommuniations among programs, and between programs and

GUIs, easier to systematize. Eventually, by inluding unertainties, upper limits, units, et., in our data model, we

will standardize their treatment and so allow generi tools to operate on them.

1.4 Problems and Solutions

In this setion I disuss various limitations we've ome aross in the way urrent systems handle abstrat data

manipulation. I onentrate on examples from PROS and FITS sine they are the systems I am most familiar with.

� PROBLEM: PROS regions are handled in a di�erent way from time, PHA �lters.

� SOLUTION: Introdue the idea of a Data Subspae whih handles �lters on all data axes in a uniform way.

The user an speify a spatial region anywhere they an speify a PHA or time �lter. The Data Subspae for

a data objet reords the way that objet has been �ltered. If you like, it is the �lter that has been applied to

the data so far. The Good Time Intervals are part of this �lter.

� PROBLEM: Making a detetor oordinate image was messy in PROS (PROS keyx, keyy syntax).

qplist "test.qp[pi=40:90℄" region=" 2048 2048 20"

lists photons in a given sky region and PI range, but

6

display "test.qp[pi=40:90℄"

does not take a region argument - you an't display it. To list photons in a detetor oordinate region,

qplist "test.qp[key=(detx,dety),pi=40:90℄"

region=" 2048 2048 20"

whih is ugly beause the spei�ation of the region and the statement that the region applies to detetor

oordinates are separated.

� SOLUTION(1): Make regions part of the virtual �le syntax, so you an do:

dmlist "test.qp[(detx,dety)=irle(2048,2048,20),pi=40:90℄"

- this is muh more oherent.

� SOLUTION(2) The sientist thinks in terms of `detetor position' and `sky position' as single attributes of the

data. Make our software able to work on two-dimensional items named 'DET' and 'SKY' to allow a natural

system of

dmlist "test.qp[det=irle(2048,2048,20),pi=40:90℄"

Make the data model support 2D objets with a name for the objet and for eah of its omponents (e.g. objet

name SKY, omponent names RA and DEC). This makes it easy for a programmer to make a �le whih knows

that it ontains a bunh of SKY eah of whih onsists of an RA and a DEC. Current �les don't have any way

of letting the software know whih olumns are paired together as positions.

� PROBLEM: No standard way to reord how the data has been �ltered on PHA or PI.

� SOLUTION: The Data Subspae does this automatially. Thus the software an, if properly oded, know

where to look to �nd out whih (energy-dependent) point spread funtion would be mathed to the urrent

image - it looks for a PI axis in the image's data subspae.

� PROBLEM: Some data manipulation tasks need you to go bak and forth between header keywords and table

olumns, but header keywords in FITS don't ontain as muh information as table olumns (short names, no

units, no vetors). Examples: we wish to ombine event lists from ACIS hips I2 and I3, whih have header

CHIP ID values giving the hip ID, getting an event list with an extra CHIP ID olumn in whih eah row is

either I2 or I3. Or, we wish to ombine tables of soures deteted with three di�erent ell sizes, to make one

table with a CELL SIZE olumn. The resulting table needs to know the units in whih CELL SIZE is measured.

Atually, it would urrently have to be CELL SIZ sine the header keywords an only be 8 haraters.

� SOLUTION: The data model supports the extra information. The I/O library handles a onvention to write

this to FITS in a way that is bak ompatible with existing data, and has now been inorporated as well in

Goddard's FITSIO software. The tool program an ask for the same information about a keyword that it

would for a olumn entry, so the ode is more uniform - fewer speial ases.

� PROBLEM: We have a bloked sky image and want to know about both the original plane pixel oordinate

system and the elestial spherial oordinate system. Most FITS appliations only support one set of WCS

keywords for an image.

7

� SOLUTION: For array objets, allow an `physial' oordinate system and an `world' oordinate system to retain

both sets of information. Allow arbitrary numbers of world oordinate systems for eah objet, so that for

instane one ould attah a galati oordinate system to the image as well. We use FITS keyword onventions

that are under onsideration for adding to the FITS standard.

� PROBLEM: Want a single program to browse and plot all kinds of data �les, labelling axes sensibly.

� SOLUTION: Eah axis in the data is liable to have both a loal and a `world' value: pixel position and elestial

position, mission time in seonds and alendar date, pulse height and nominal energy. The data model treats

all of these as generi oordinate systems, so a plotting program an reognize them automatially. Example:

pulse height versus time image, with nominal energies and alendar dates automatially labelled.

� PROBLEM: Want to support a table with images embedded in one of the olumns, for instane aspet amera

reords.

� SOLUTION: Introdue a data model onvention to handle this ase, whih is supported to a limited extent in

FITS by the multidimensional array TDIMn syntax; further simplify by onsidering an ordinary image to be a

speial ase of a table with one row and olumn.

� PROBLEM: Want to reate datasets suh as an array of x-ray olors versus best �t parameters, and invert to

make an array of best �t parameters versus x-ray olors.

� SOLUTION: Provide data model support for arrays whose elements are themselves n-dimensional.

� PROBLEM: In a derived �le like a light urve, we may make many olumns (raw ounts, bakground ounts,

net ount rate, et.) even though the basi onept is of time versus net ount rate. We want our plotting

software to plot the two olumns of most interest by default. Also, indexing operations may also be arried

out on event list olumns of `most interest'.

� SOLUTION: De�ne `preferred' olumns (axes) of the table, whih will rank a subset of the olumns in an

order whih may be di�erent from the order of the olumns in the table. A plotting program whih plots two

desriptors (quantities) against eah other will then take the �rst two preferred olumns if suh exist, otherwise

it will take the �rst two olumns in the table olumn order.

� PROBLEM: Want to deal with upper limits properly.

� SOLUTION: The interfae to the data �les should be able to ope with any data item being either a detetion,

an upper limit, or a detetion with unertainty. Other software, however, will see the unertainty ranges as

separate olumns and won't know that a partiular value is an upper limit.

This solution is not yet implemented in the CXC DM, but support for NaN entries and null entries is present.

� PROBLEM: We have a set of PSFs whih were reated at XRCF at di�erent energies; they are labelled with

a `header keyword' ENERGY. We wish to plot the FWHM of the PSFs versus energy. In an existing system,

one would run the alulate-FWHM program on eah PSF �le separately, apturing the results and running

a table reation program to ombine them in a single result table (or noting them down on paper and typing

them bak in!); plotting the results might not be trivial either.

� SOLUTION: We should be able to do this with three ommands: one to stak the PSF �les on energy, reating

an index �le onsisting of a table of energy versus �lename, a seond to run the alulate-FWHM program on

the stak, and the third to plot the resulting �le. In our system, the added bonus is that if the alulate-FWHM

program also alulates unertainties, these will be piked up by the plotting program.

This solution is not yet supported; a speial staking tool (to make staks with index olumns like energy...) is

needed to do this and will be onsidered for future development.

8

1.5 Informal Introdution to the Data Model

In our model, eah dataset onsists of an ordered set of `Bloks'. A DM Blok onsists of a table whose olumns may

be salars, vetors, arrays, or ranges. Header desriptors may be attahed to the table as a whole, or to individual

olumns or to the data subspae. An important speial ase of a blok table is alled an Image, and we will often

onsider bloks to be of two types, Table and Image (even though stritly speaking an Image an be treated as a

kind of Table).

A table onsists of a header, together with a set of rows and olumns. I will refer to the intersetion of a row

and a olumn as a `ell'. Some of our tabular data produts will ontain small embedded images. For instane,

aspet amera data will inlude 6x6 pixel images of eah �duial light in every row of the table (the row represents

the information from one aspet amera exposure), and FAINT mode event data has 3x3 images of the event island

in the PHAS olumn. Also, we may eventually inlude small `postage-stamp' images of soures in our soure list

data produt. This suggests a theoretial simpli�ation: if an image an be in a ell of a table, we may onsider an

image on its own to be just a table with one ell. So, instead of two di�erent fundamental types of data, we have a

single type - the `table-whih-an-ontain-images'. We an then speify that a table with one row and one olumn

may, if desired, be stored on disk using an image format instead of a binary table format. We have thus moved the

distintion between a table �le and an image �le to a di�erent level: an image is a omponent of a table, rather than

its peer. We still, of ourse, need to have interfaes to operate on images, so this simpli�ation is minor in pratial

terms.

The header in a FITS �le is a heterogeneous olletion of information. Some of the keywords desribe the �le's

struture, while the remainder are metadata: data whih apply to the �le as a whole, but are true siene data

rather than desriptive of the �le struture. We want to layer extra struture on the �le so we an tell the di�erene

between these types of header keyword. Some of the metadata has partiular importane: it desribes how the data

in the table olumns was seleted. We treat this kind of information in a systemati way and isolate it oneptually

as the table's `data subspae'.

The �gure below gives a shemati example of a ompliated table.

’3C 273’

’Cas A’

(158.4, 218.3)

(22.1, 38.2)

0

0

0

0

2

4

12

4

3
1

2

4

12

3

2

1

detx

dety

dety

detx

32.8 + 0.4-

41.9 + 0.2-

Name Position Image Flux
tpx tpy

EQPOS

(RA,DEC) Intensity

counts/s

Coord

System
Coord System

Cell Size 0.1 degree

Table

attribute

Figure 1: Example of a ompliated table. The table is a soure list ontaining `postage stamp' images of eah soure.

The position olumn has a oordinate system attahed to it, the ux olumn has unertainties, and the whole table

has metadata suh as the soure detetion ell size.

1.6 Table olumns

FITS already provides support for vetors and arrays in table olumns. However, there are several enhanements

we need. Partiularly for the ase of positional data, we want to have paired table olumns: for instane, DETX

and DETY paired as DETPOS, or RA and DEC paired as EQPOS, with both the individual and the pair names

available in the �le. We also want to support unertainties and upper limits, whih implies something like having

9

a olumn FLUX and a olumn FLUX ERR (no problem right now) together with a struture whih ties the two

together as a single objet (Flux with error). Both of these enhanements, and the desire for bak ompatibility,

lead us to a system with a low level (FITS) set of raw olumns and a high level (Data Model) set of olumns, with

one high level olumn mapping to several low level olumns.

1.7 Table Attributes

Table attributes are the equivalent of header keywords. Unlike FITS header keywords, we support the various

desriptor attributes suh as units, et. FITS allows 'indexed keywords' whih are really 1-D arrays of keywords: we

want to support this at a higher level, and add support for `vetor keywords', e.g. grouping together RA and DEC

as a single high level table attribute EQPOS.

We'd also like to speify some attributes as belonging to spei� table olumns rather than to the table as a

whole. These are alled olumn attributes. Similarly, the data subspae may have its own attributes: livetime is an

example.

1.8 Binned Data

An event list table onsists of values whih represent preise points in an n-dimensional spae. In ontrast, we often

deal with binned data in whih the values represent ells of �nite volume in the spae. The simplest example is a

histogram with equal size bins, but we also have datasets with logarithmi bins or even arbitrary bins (e.g. those

hosen to math the position of sharp features in a spetrum). A binned data olumn an use the same mehanism

as the unertainties for a normal olumn, sine it just involves speifying a range.

1.9 Arrays and Images

When we have binned data with ordered, equal size, ontiguous bins, the olumn of data may be de�ned impliitly by

speifying the start value and step size. Suppose we have a table whose olumns inlude three binned data olumns

and two point data olumns, one of whih happens to be a 3D position:

C1 C2 C3 C4 C5

[0.5:1.5) [10.0:11.0) [4.8:4.9) 1082.2 (0.0, 18.3, -812.3)

[1.5:2.5) [10.0:11.0) [4.8:4.9) 182.3 (4.3, 12.2. -712.3)

....

[0.5:1.5) [11.0:12.0) [4.9:5.0) 1211.2 (2.1, -1.2, -271.3)

[1.5:2.5) [11.0:12.0) [4.9:5.0) 1232.1 (6.2, -4.2, -0.023)

....

Here the rows are ordered so that C1 hanges most rapidly, followed by C2 and then by C3 so that the grid of

ells in the three dimensional C1, C2, C3 spae is traversed in a regular order. We an replae this table by one

in whih only the values for C4 and C5 are inluded explitly. The information about the binned C1, C2, and C3

datasets are stored in the desriptions of the struture of quantities C4 and C5. C4 is a normal 3-dimensional image;

the pixels of the 3-dimensional array of values in the C4 olumn are mapped to values of C1, C2 and C3, whih are

alled the axes of the image. C5 is a more ompliated objet, an image whose pixels are vetor-valued. Support

for objets like C5 (arrays of vetors) is new, but gives added onsisteny to the data model. Arrays of vetors are

useful, for instane, when the varying entroid position of a soure is measured as a funtion of several parameters.

1.10 Desriptors and Elements and Components

The building bloks of our data are alled Desriptors and Elements. The Desriptor represents a named quantity

whih has an array of Elements assoiated with it; the simplest ase is when the array is trivial and there is only

10

one Element for the Desriptor. The Element is the value of the Desriptor, sometimes a simple salar value but in

general itself a vetor. Eah member of the vetor has its own name - for instane a desriptor EQPOS representing

the equatorial position of something, with a dimensionality of two, has omponents alled RA and De. In the

original DM design these omponents only existed as names, and the data they pointed to was aessed through

the EQPOS desriptor. In the �nal implementation, pratial onveniene drove us to reate impliit `omponent

desriptors' for eah member of a vetor desriptor, so that RA and De themselves are salar desriptors. In general,

any vetor desriptor will have assoiated salar omponent desriptors for eah of its omponents.

Let's onsider a simple physial quantity: the energy of the Fe K line, whih we wish to store as an objet

FE K ENERGY. Suppose we have measured it to be 6:4� 0:3keV . We will store the name FE K ENERGY and the

unit keV as part of a Desriptor of real data type. Assoiated with this Desriptor is an Element of dimension 3: the

values 6.50, 5.5 and 7.3 representing the main value and the unertainty range. We store the range sine this lets us

easily handle the ase of upper limits: an upper limit is just an element for whih the lower bound of the unertainty

range is zero or negative. If we get a whole set of measurements of FE K ENERGY, we retain the single Desriptor

and assoiate many sets of values with it. In the urrent release, the DM has no knowledge of the semantis - that

the range is atually an unertainty on the value - and annot support the ase where there is a whole table of values

sharing a single unertainty range in the header. The new design will support the onept of 'element type' whih

enodes this knowledge, although it may be a while before the software is upgraded to do anything useful with the

information.

Another type of Desriptor is a Filter desriptor, whih has an range but no value. Filter desriptors are used to

desribe �lters, regions, intervals, et.

Multiple values assoiated with a single Desriptor are alled Arrays. Arrays of salar Elements are familiar; arrays

of vetor Elements are more ompliated, but are sometimes needed. The simplest kind of array is a one-dimensional

array, whih simply has a given number of Elements. Note the di�erene between an array with dimensionality 1

and dimension n (n 1-dimensional Elements), and a vetor with dimensionality n and dimension 1 (1 n-dimensional

Element).

(14.2, 31.8, 2.2)

x y z

POSITION(3) The numbers represent different

physical quantities or axes

PHA(9)

(14, 21,11,2,3,48,1,0,2)

The numbers represent different

examples of the same quantity

(values along a single axis)

Figure 2: Di�erene between a vetor and a 1-D array. In the �rst ase, eah omponent has a name (e.g. `y'); you

would plot the n-tuple as a single point in n-dimensional spae. In the seond ase, the di�erent omponents do not

have names. You would plot this as 9 di�erent points along a 1-dimensional spae. We also use arrays of vetors:

for example, PSF entroid position versus energy and o� axis angle.

1.11 Staks

To work more e�etively with multiple sets of data, we introdue the onept of staks. The simplest stak is just

a list of �les. However, a more powerful kind of stak is a table one of whose olumns ontains �lenames: in other

words, we have a list of �les whih is labelled by the other olumns. As an example, let us onsider a set of point

spread funtion alibration images whih have been taken at some quasi-random set of energies and o� axis angles

and have similarly random �lenames PSF42, PSF13, PSFA1, et. We make a table PSFSTK as follows:

ENERGY THETA PSF_FILE

real real file

11

0.3 42.1 PSF42

0.3 0.1 PSFA1

....

5.2 0.2 PSF13

This gives us a `library' of PSFs whih we an look up as a funtion of the two parameters ENERGY and THETA.

If the ENERGY and THETA parameters are table attributes (header keywords) in the individual PSF �les, we an

imagine a program whih would make this stak �le PSFSTK automatially by saying: look at all the �les in this

diretory, and for eah �le with a table attribute OBJECT whose value is equal to `PSF', add a reord to the stak

labelled with the values of the table attributes ENERGY and THETA. I will all this operation `staking (a set of

tables) on ENERGY and THETA'.

We then de�ne a `stak operation' at the tool level as follows: if the e�et of a tool T on a non-stak �le F is to

make a multi-line table T(F), then the e�et of the tool on a stak is to make a new stak table where eah entry F

in the stak olumn is replaed by the name of T(F). If the e�et of T is to make an output �le with a single line,

then the entry F is replaed by the ontents of that line (so the output �le is no longer a stak but a single table).

To ontinue the earlier example, onsider two tools T1 and T2, where T1 takes the histogram of the image pixel

values, and T2 returns a one-line table ontaining the entroid position and total ounts. Running T1 on PSF42

makes a new �le PSF42 IMHIST (say) with several rows and olumns. Running T2 on PSF42 makes a new �le

PSF42 CTR with several olumns but only one row:

XCEN YCEN TOT_CNTS

real real integer

42.3 121.2 141412

Then running T1 on PSFSTK should make a new stak as follows:

ENERGY THETA IMHIST_FILE

real real file

0.3 42.1 PSF42_IMHIST

0.3 0.1 PSFA1_IMHIST

....

5.2 0.2 PSF13_IMHIST

as well as making all of the individual IMHIST �les. But running T2 on PSFSTK should make a single �le

ENERGY THETA XCEN YCEN TOT_CNTS

real real real real integer

0.3 42.1 42.3 121.2 141412

0.3 0.1 52.1 1109.1 32821

....

5.2 0.2 9212.2 104.2 1821

The power of this is that it allows us to do aggregate analysis easily: we an now use the generi plot tool to

plot, say, XCEN versus THETA to see how those two parameters vary with eah other.

This enhaned stak apability will be implemented in the new DM design via speial tools, rather than being

part of the intrinsi DM syntax.

12

2 Some general requirements

2.1 Data Model and �les

We require that the data model reet the struture of our siene data as generally as possible. Our paradigm for

analysing data involves applying tools (programs) to one or several input data �les, and generating output �les. Data

�les may be `standard data produts' whose struture and ontents are prede�ned in detail by the CXC, `user-derived

data �les' whih follow our general paradigm but whose detailed struture is spei�ed by the user, and `ompatible

data �les' whih are produed by external analysis systems (inluding arhives of older missions) but whih are

suÆiently similar in struture that our software an reognize them. It turns out that almost all our data an be

desribed in terms of instantiations of a single kind of objet, whih I will all an DM blok (or DM Table). There

is also a speial avor of DM blok alled an DM Image whih is treated separately in some ases.

A requirement is that the division of our data into separate �les should `make sense' to the sientist, logially

related information being kept together. An obvious way to do this in the objet-oriented paradigm is that eah

�le should ontain exatly one DM Table. However, this isn't the way that �les are made by many other software

systems, so we have to support a more general approah.

We require that the data model allow the appliations programmer to ignore the details of the spei� �le format

onventions (e.g. FITS, QPOE) but also allow some measure of override aess to the spei� �le format writing

kernels. At least three kernels will be supported by the model, to support writing and reading ASCII text �les, FITS

�les and IRAF �les. By IRAF �les I mean IMH �les and PROS QPOE �les.

2.2 Compatibility Requirements on FITS kernel

We require that as many of the following existing arhival FITS datasets should be readable by the FITS kernel

as valid Siene Datasets: Event lists and XSPEC-type PHA and response matrix �les for the following missions:

Einstein, ROSAT, ASCA, XMM-Newton and XTE. This imposes requirements on the FITS keywords used to map

data model strutures.

2.3 The native data model in FITS

FITS �les ontain a set of independent Header Data Units (HDUs). There are several avors of HDU but the most

important ones are IMAGE and BINTABLE. We will onsider a FITS �le ontaining only IMAGE and BINTABLE

HDUs. The HDU onsists of a header and a data setion.

� The header onsists of an arbitrary number of header ards.

� A header ard ontains a keyword (an 8 harater ase-insensitive string), a value (of one of a number of data

types), a omment (a string whih is usually ignored by software), a data type (whih is not given expliitly,

but may be dedued from the formatting of the value), and a ard type (dedued from the keyword name).

� The ard types are: Mandatory ards, standard reserved ards, loal reserved ards, and ordinary ards. By

loal reserved ards I mean ards whose keywords are not reserved from the point of view of the FITS standard

but whih are given a reserved meaning in some extra onvention to whih the partiular FITS �le adheres.

An example is the WCS onvention whih has been proposed for inlusion in the standard and reserves the

meaning of several extra keywords.

� An IMAGE data setion onsists of an n-dimensional array of numerial values. Assoiated with the IMAGE

data is the data type of the array elements, the number of dimensions, and the size of eah axis. This information

is ontained in reserved header ards; saling and unit information about the data and oordinate information

about the axes may also be assoiated with the image in this way.

13

� A BINTABLE data setion onsists of a set of olumns. Eah olumn has a data type and a name, and possibly

a unit and various oordinate information. All the olumns have the same number of entries.

14

2.4 Interation of Data Model and other infrastruture

The data model a�ets the other infrastruture parts as follows:

� The �ltering language desribes a virtual dataset in terms of a preexisting one. This desription should be

omplete in the sense that it �lls in all the interfae requirements of the data model.

� The data model I/O works on �ltered (virtual) datasets.

� The data model is pretty muh deoupled from work like the sripts, Sherpa parsing, et.

3 The CXC Data Model, SDS Version 2.0

In this setion I present the detailed design for the data model, developed from the earlier model whih was based

on extensive disussions with Martin Elvis, David Van Stone and Peter Patsis. The model represents a very general

kind of table, whose olumns an ontain vetors or multidimensional arrays, with assoiated oordinate systems

and other metadata. Further metadata an be assoiated with the table as a whole or with individual olumns, and

a `data subspae' indiates the range of values for whih the table is valid.

This version 2.0 (Ot 2001) has been signi�antly updated from the 1994-1997 versions whih desribe the design

prior to implementation of the �rst DM release.

A note of explanation is required for objet-oriented fans (others may skip this paragraph). A Rumbaugh diagram

for our design, shown below, indiates that only a small number of distint objets are used. However, I feel that

the Rumbaugh methodology, at least as I have been made to understand it, obsures understanding of the true

struture of our data in whih multipliity and aggregation of instanes play a key role. I therefore use a slightly

di�erent kind of diagram, whih I will all a struture diagram, whih inludes strutural omponents whih are not

neessarily distint objets in the OO sense, and whih shows separate instanes of an objet if (and only if) the

objet is instantiated in a separate role. All of the assoiates represent `has a' relationships.

15

ASC Table

Data Descriptor

Quantity

Name

Component

Coord Transform

Axis Group

Axis

Row

Element

Figure 3: Rumbaugh diagram for ASC Table/blok Data Model, showing the fundamental di�erent objet lasses.

The Data Desriptor lass is a omposite whose omponents are shown within an enlosing box.

16

In less tehnial language, I'm trying to present an abstration of a partiular kind of sienti� dataset. The

diagrams I show are an attempt to illustrate the di�erent omponents that go to make up this abstration. Eah box

is one of these omponents, and a line going out of the bottom of one box into the top of another indiates that the

seond box is a omponent of the �rst. A symbol by the end of the line indiates the number of suh omponents

that will exist. For instane, in the Table Model diagram the symbol appears next to both the line from Table

Data to Column Data Desriptor and the line from Table Row to Column Data Cell. This indiates that there are

the same number of Column Data Cells in a Table Row as there are Column Data Desriptors in a Table Data, and

that we will represent this number as (it happens to be the number of olumns in the table). If no multipliity is

indiated on a line, there is exatly one of the omponents attahed to the parent objet.

Text underneath a horizontal line below the name of the objet indiates parameters (attributes) assoiated with

that objet. For instane, the DM Table has a Name. A double line at the bottom of an objet box indiates that the

struture of the objet is omplex and there's a whole separate diagram for it later on. For instane, DSS Desriptor

is a partiular kind of Desriptor objet; the Desriptor has a diagram of its own, and the text below de�nes what

kind of a Desriptor a DSS Desriptor is (For instane, unlike a general Desriptor, it an't be an Array.)

All multiple subomponents are onsidered to be ordered. In other words, there is a de�ned order of the olumns

in a table, a de�ned order of header keywords in the header, and a de�ned order of the axes in an array. One may

refer to a olumn by its name (e.g. TIME) or by its number (e.g. Column 4). A single Table Column may map

to several olumns in an underlying table format (e.g. FITS BINTABLE), and in general the numbering of a Table

omponent is distint from the numbering of the orresponding struture in the underlying data format.

3.1 DM Table

The highest level objet is the DM blok. It onsists of three main parts: the Table Data proper, the Header, and

the Data Subspae. Eah of these ontains Data Cells made up of arrays of Components whih ontain the atual

data, and Data Desriptors whih provide metadata about the meaning of the Components.

The DM blok has a single attribute of its own: the table name.

4 Table Data Setion

4.1 Table Data

The Table Data Setion represents a table with r rows and olumns. The intersetion of a row and a olumn is

a Data Cell; all the Data Cells in a olumn have the same struture, and ontain the same type of data; they are

desribed by the Data Desriptor for that olumn. The di�erent olumns in a row may have di�erent strutures.

Assoiated with the Table Data setion is an ordered list of Preferred Columns, as a hint to generi software

whih only operates on a given number of olumns without speifying spei� olumn names.

17

DATA SUBSPACE HEADER TABLE DATA

DSS

Component

TABLE ROW

Data Descriptor

DSS Data Descriptor
Column

Data Descriptor

Attribute

DSS

Data Cell

Attribute

Data Cell

Column

Data Cell

Element

Attribute

Element

Data

Element

DC

DA

DA DC
1

c

r

r
c

N
AN

H

ASC TABLE MODEL ASC TABLE

Name

DSS Region

DN

Figure 4: Data Model 1: Overall struture of the data model, showing the ASC Table, used as the highest level data

objet enapsulating all others.

18

4.2 Desriptor

The Desriptor objet is proved to desribe the struture and properties of named quantities. It is basially a

struture whih provides a name, a unit and other desriptive information, and spei�es a data type. It is the

abstration of the FITS BINTABLE's TTYPEn, TUNITn, et., header keywords for a olumn.

The Desriptor has:

� Name

� Unit

� Desription

� Data type

� Display format

� Element dimensionality d

� Element type t

� Array dimensionality n

� Array spei�ation: dimensions n

1

:::n

n

grouped into Axis Groups, total number of values N = produt of the

n

i

.

� Component desriptors

1

; :::

d

� Coordinate desriptors C

1

; :::C

m

� Axis Group desriptors

� Parent desriptor

� Elements E(n

1

; :::n

N

)

� Kernel marker

19

DESCRIPTOR

Name Unit Description Data Type Display Format

Element dimension d
Element type t
Array dimension n
Array spec ni, gi

Component
Descriptors

ELEMENTS Coord
Descriptors

(X1,X2,...XN)

Axis Group
Descriptors

d N

N

n c

n g

Parent
DescriptorBLOCK

F
i
g
u
r
e
5
:
D
a
t
a
M
o
d
e
l
2
:
T
h
e
D
e
s

r
i
p
t
o
r
o
b
j
e

t
,
w
i
t
h
a
t
t
r
i
b
u
t
e
s
a
n
d
p
o
i
n
t
e
r
s
t
o
a
s
s
o

i
a
t
e
d
D
e
s

r
i
p
t
o
r
s
a
n
d
E
l
e
m
e
n
t
s
.

2
0

In more detail, the attributes are:

� The desriptor name, a harater string. Any ASCII harater string shall be supported, but we reommend

that the string shall onsist of only alphabeti upper or lower ase letters a-z,A-Z; numeri digits, 0-9; the

symbols +,- and undersore (). In partiular, spaes are not permitted (exept trailing spaes whih are

not onsidered to be signi�ant). Internally de�ned desriptors in the DM use the leading harater #. At

this level, ase is signi�ant, although we antiipate that user aess routines will not be ase-sensitive and

reommend that names be unique within a table even when ase is ignored. The idea here is that we may want

to name something MaxVoltage instead of MAXVOLTAGE so that the software knows how to print it niely,

but we don't want to require that the user has to get the apitalization right when searhing for it. So ase is

remembered, and returned orretly, but mathes are ase insensitive.

� The unit. A harater string whih spei�es the physial unit. Should omply with the HEASARC/OGIP

format on unit strings or the JCMLIB spei�ation for unit strings.

� The Desription is a string whih is used to label human readable output suh as ASCII print �les and graphial

axis labels. It is a longer name whih may inlude spaes and other speial haraters, inluding bakslash.

I suggest the use of TeX esape sequenes whih are supported by some graphis libraries suh as SM, for

instane `n alpha' for �. Thus a Desriptor might have the name `RA' and the desription `n alpha (J2000.0)'.

� The Display Format indiates the preferred output format for a single data value assoiated with the quantity in

a text browser. It is required that the Display Format an be returned as a string Fortran format spei�ation

ompatible with the TDISPn keyword in a FITS �le. This optional information may be provided as a hint

to browsers to let them format tabular output eÆiently. For instane, a quantity stored as a 4 byte integer

might be known to only take values less than 1000, allowing a display format of `I4' instead of the larger `I10'

needed by an arbitrary 4 byte integer. Pixel oordinates might be displayed as `F8.3' while a time spei�ation

in seonds might require the greater preision of `F20.6'. However, the display format may be absent or the

browser may hoose not to use it, it's just provided to help make the output pretty.

� The Data Type indiates the type of data in an assoiated Element. Supported data types shall inlude:

{ Integer, 2 byte

{ Integer, 4 byte

{ IEEE Real, 4 byte. The spei�ation of IEEE here indiates that it must be possible to return the data in

IEEE format, and it must be possible to store IEEE speial values suh as NaN and -Inf. How the data

are atually stored internally or in a data �le is an implementation detail.

{ IEEE Real, 8 byte

{ Logial, 1 byte

{ String, spei�ed �xed number of ASCII bytes s (Uniode is not urrently supported).

{ Bit, 1 byte

{ Unsigned Byte, 1 byte

{ Unsigned Integer, 2 bytes

{ Unsigned Integer, 4 bytes

In addition, the following data types are under onsideration for future support:

{ Extended Unsigned Integer, 8 bytes

{ Complex, 16 bytes

21

Table 1: Codes for Data Types

Data Type API routine suÆx FITS CFORM FITS TFORM

Integer/2 s 'I' 'I'

Integer/4 l 'J' 'J'

Real/4 f 'E' 'E'

Real/8 d 'D' 'D'

Logial q 'L' 'L'

String 'A' 'A'

Unsigned/1 b 'B' 'B'

Unsigned/2 us 'U' 'I'

Unsigned/4 ul 'V' 'J'

� The Element Dimensionality spei�es the dimensionality d of all Elements assoiated with this Desriptor. The

default is d = 1.

� The Element Type an be Value (V); Value with Unertainty (U), Value with Fixed Unertainty (UF), 2D

Region (REG), Bin (BF), Bin Start (SF), et. The di�erent element types are disussed in full in the setion

on elements. All Elements assoiated with the Desriptor must be of the same Element Type. Element types

are newly supported in DM2.0.

� A Kernel marker. This is a plaeholder to support extra information needed to reonstitute a lean �le for a

partiular kernel.

� Array Dimensionality n spei�es the dimensionality of the array of Elements making up a single Cell assoiated

with the Desriptor. If n > 0, there must be an Array Spei�ation assoiated with the Desriptor; if n = 0 there

is no Array Spei�ation. All Cells assoiated with the Desriptor must have the same array dimensionality

and array spei�ation.

� If d > 1, there are a set of d Components. For instane, we might de�ne a 2-dimensional Desriptor with name

SKYPOS and omponent names RA and De. If d = 1 then the single omponent is de�ned to be idential

with the Desriptor.

We name ertain speial ases:

� { A Desriptor with d = 1 and n = 0 is known as a Salar Desriptor.

{ A Desriptor with d > 1 and n = 0 is a Vetor Desriptor.

{ A Desriptor with d = 1 and n > 0 is a Salar Array Desriptor.

{ A Desriptor with d > 1 and n > 0 is a Vetor Array Desriptor.

� Finally, a desriptor may have a Comment �eld. This Comment �eld onsists of arbitrarily many 72-byte text

strings eah with an assoiated 8-byte tag. The default value of the tag is the string 'COMMENT'. Other

values of the tag are not guaranteed to produe valid �les for all kernels, although 'HISTORY' and blank are

valid for FITS �les. The Comment �eld text may appear in the underlying �le header anywhere following the

appearane of the desriptor name and preeding the next desriptor name.

22

4.3 Array Dimensions

An Array Dimensions spei�ation desribes the arrangement of a set of N elements into an n-dimensional array.

The n axes of this array, i = 1; :::n, have dimension (size) n

i

, so that

Y

i=1;n

n

i

= N

The elements E(p

1

; :::p

n

) of the array are labelled by array pixel numbers, whih are an ordered n-tuple P =

(p

1

; :::p

n

).

4.4 Array Axis

Eah axis i of the array is de�ned by a given dimension (size, number of pixels) n

i

. We adopt the FITS (and Fortran)

onvention in whih the pixel numbers start at one, and in whih a default storage order is implied in the following

sense: an Element Number e is de�ned equal to

e(P) = p

n

+ (p

n�1

� 1) � n

n

+ ((p

n�2

� 1) � n

n

n

n�1

+ :::

or

e(P) =

n

X

i=1

0

�

(p

i

� 1)

n

Y

j=i+1

n

j

1

A

where

Q

n

j=n+1

n

j

in the �nal term of the sum is interpreted to be equal to one. A mehanism will be supplied

to return the elements in element number order. In FITS �les and in Fortran arrays, the array elements must be

atually stored in element number order.

4.5 Axis Groups

We add a little extra struture to the array to group axes whih may have ommon oordinate transforms. Axis

Groups are to image axes as Vetor Desriptors are to table olumns. In our model we onsider something like

detetor pixel position to be a single, two-dimensional, Desriptor; if we have a data ube of detetor pixel position

DETX, DETY versus energy E we wish to emphasize the fat that DETX and DETY are related to eah other in

a way that they are not related to E. In this view, the three dimensional data ube DETX,DETY,E is instead a

two dimensional array with two axes DETPOS and E, in whih the �rst axis is itself two-dimensional. This �rst,

two-dimensional axis may have a oordinate system on it whih applies a two-dimensional spherial rotation, or it

may have a mask on it whih spei�es a two-dimensional region, in eah ase requiring that treatment of DETX and

DETY be oupled. In ontrast, we do not expet to get situations where we must treat DETX and E in a oupled

way (if we do, they will have to be treated at a higher level).

The Array Dimensions spei�ation adds the onept of Axis Groups. In the example above, the three dimensional

array has two axis groups, one a two-dimensional axis group ontaining the �rst two axes and another one-dimensional

axis group ontaining the third. We an label the array by axis group pixel numbers P

G

= ((p

1

; p

2

); p

3

), an ordered

pair of a two-dimensional detetor position pixel and an energy bin.

Say there are g axis groups eah of dimensionality g

m

;m = 1; :::g. We have

X

m

g

m

= n:

23

4.6 Parent Desriptor

If the Desriptor is a omponent Desriptor, an Axis Group or Coordinate Desriptor, et., it has a parent - another

desriptor whih refers to it. A raw table olumn may have no parent desriptor; �ltered table olumns point bak

to the raw olumn.

4.7 Coordinate Transform Desriptor

The Elements of a Coordinate Desriptor are de�ned impliitly by mapping the Elements assoiated with another

Desriptor using a Coordinate Transform. A simple example is the mapping of mission time TIME in seonds to

Julian Date JD in days. We de�ne this transformation by hoosing a referene value of TIME (usually 0.0) and

the orresponding referene value of JD (the JD when TIME is equal to 0.0; say 2445200.0), and de�ning the

transformation relative to this referene value. If TIME is the orret time in seonds sine the referene value,

then the transformation type is LINEAR and the transformation sale is 1.0/86400.0 (the number of days in a

seond); this ompletely determines the transformation. If TIME is a spaeraft lok with glithes and resets, the

transformation may be a lookup table or a polynomial with a more ompliated de�nition. Lookup transforms are

not yet implemented in the DM.

In general, we onsider a oordinate transform to link two Desriptors whih have the same Element Dimension-

ality d. One Desriptor is referred to as the Parent or Pixel Desriptor and one as the Coordinate Desriptor (this

does not neessarily imply that the Pixel Desriptor has units of pixels; the names evoke the FITS keywords CRPIX

and CRVAL). The transform onsists of a Coordinate Transform Spei�ation whih has a Transform Type, a set

of d Transform Sales �

i

(i = 1; ::d), and assoiated Transform Parameters spei� to the transform type. It also

has a Referene Pixel Element and a Referene Coordinate Element, whih are Value Elements (Elements of type V,

see below) orresponding to the Pixel and Coordinate desriptors. In our example above, the Pixel and Coordinate

Desriptors are TIME and JD, and the Pixel and Coordinate Elements have values 0.0 and 2445200.0.

The point here is that we hoose to represent an arbitrary transformation by a loal linear transform about

a referene point, plus higher order orretions. This has three advantages: it maps diretly to the FITS CR-

PIX/CRVAL/CDELT onvention; it ensures that we have a de�ned `enter' for our transformation, whih an be

used as a default loation by an appliation; and often the transformations we use are linear, and don't require any

higher order parameters, so it makes the usual ases simple.

24

Name Unit Description Data Type Display Format

Element dimension d
Element type t
Array dimension n
Array spec ni, gi

Component
Descriptors

ELEMENTS Coord
Descriptors

d N

N

n c

Parent
DescriptorBLOCK

DESCRIPTOR

COORDINATE

(If main DD is an axis group)
(Equation defining
coordinate transform)

Used to get pixel values for coord transform

= 1
= 1, 1, 1

= 1 or 2

= Value

(which are also coord
descriptors)

(A coord descriptor
cannot have axis groups since
its array dimension is always 1)

F
i
g
u
r
e
6
:
D
a
t
a
M
o
d
e
l
3
:
U
s
e
o
f
t
h
e
C
o
o
r
d
i
n
a
t
e
T
r
a
n
s
f
o
r
m

2
5

Name Unit Description Data Type Display Format

Element dimension d
Element type t
Array dimension n
Array spec ni, gi

Component
Descriptors

ELEMENTS Coord
Descriptors

d N

N

n c

Parent
Descriptor

DESCRIPTOR

= 1
= 1, 1, 1

= 1 or 2
cannot have axis groups since
its array dimension is always 1)

FILTER

Filter descriptors

(not supported yet)
Range and region data
Range for 1D
Region for 2D

Range

Parent is the corresponding column
descriptor if there is one

BLOCK

Subspace

(Also filters)

F
i
g
u
r
e
7
:
D
a
t
a
M
o
d
e
l
3
b
:
F
i
l
t
e
r
D
e
s

r
i
p
t
o
r
s

2
6

4.8 Column Data Desriptor

A Data Desriptor provides information about a Desriptor whih we're going to provide values for. The simplest,

minimal Data Desriptor is a Data Desriptor whih is a salar Desriptor. More ompliated Data Desriptors

provide support for vetor Desriptors, for Arrays (a Desriptor with an Array Spei�ation), and for assoiated

oordinate and axis desriptors.

Every Data Desriptor has a single Data Desriptor. A Data Desriptor whose Data Desriptor is a Vetor Array

Desriptor is alled a Vetor Array Desriptor, and so on. If the Data Desriptor is an Array Desriptor (n > 0) then

there is an assoiated Array Spei�ation with Axis Groups and Axes. A Salar Data Desriptor in a Column Data

Desriptor is the abstration of the FITS keywords TTYPEn, TFORMn, TUNITn, et. An Array Data Desriptor

orresponds to the FITS BINTABLE multidimensional array onvention for TFORM values. Vetor Data Desriptors

do not orrespond to any existing onvention in FITS.

Assoiated with the Data Desriptor there may be a Data Coordinate Desriptor linked to it by a Data Coordinate

Transform. For instane, a table may have a olumn TIME with values inluded expliitly in the table ells. The

TIME olumn may have assoiated with it a Desriptor JD whih gives the Julian Date. The individual values of

JD are not stored expliitly, but are implied by the JD to TIME oordinate transform. JD is a Data Coordinate

Desriptor assoiated with the Data Desriptor TIME. The Data Coordinate Desriptor and Transform are the

abstrations of the FITS keywords TCTYPn and TCRVLn, TCRPXn, et.

A Column Data Desriptor with a Data Desriptor whih is an Array has an Array Spei�ation with one or more

Axis Groups. Eah Axis Group may have an assoiated Axis Group Desriptor, related to it by a oordinate transform

alled a Pixel Coordinate Transform whih must be of transform type LINEAR. The Axis Group Desriptors are the

labels of the axes of the array. For instane, we may have a Data Desriptor PSF whih is a three dimensional array

with axis groups g

1

= 2 and g

2

= 1, assoiated with Axis Group Desriptors DETPOS (d = 2, omponent names

DETX and DETY) and ENERGY (d = 1). The element dimensionality of the Axis Group Desriptor must be the

same as the dimensionality of the Axis Group.

Further, the Axis Group Desriptors may themselves have assoiated Axis Group Coordinate Desriptors related

to them by Axis Group Coordinate Transforms. Consider another example in whih the Array has n = 2; g = 1; g

1

= 2

and the single Axis Group Desriptor is SKYPOS with omponents X and Y representing the X,Y sky pixel oordinate

positions. We may assoiate with it an Axis Group Coordinate Desriptor EQPOS with omponents RA and DEC,

linked by a oordinate transform of type TAN, representing the atual equatorial sky positions. The Axis Group

Coordinate Desriptors are the abstrations of CTYPEn in a FITS image, while the lak of support for Axis Group

Quantites themselves (suh as SKYPOS X,Y) is an unfortunate limitation of urrent FITS pratie.

4.9 Interval type

An Interval de�nes a ontiguous subset of the data values of the appropriate data type. Intervals are only meaningful

for data types where a well de�ned ordering of the data values exists. For integer and real types this is the usual

ordering; for string types this is de�ned to be the ASCII ordering.

The most general Interval is a minimum value, a maximum value, and an interval type. Possible interval types

are losed, open, semi-open lower, and semi-open upper, denoted as [a:b℄, (a:b), (a:b℄, and [a:b) respetively. These

are de�ned as:

x 2 [a : b℄ , a � x � b

x 2 (a : b) , a < x < b

x 2 (a : b℄ , a < x � b

x 2 [a : b) , a � x < b

The semi-open intervals are useful for ensuring that boundary values are not ounted twie. For integer and string

data types, the only possible type of interval is Closed. This is also the default interval type for real data types.

27

In the DM2.0 design, Intervals are assumed to be [a:b) in all real ases and [a:b℄ in all integer ases. Adding

support for expliit ontrol of interval type is under onsideration.

4.10 Elements

The atual data for the table is stored in Elements. An Element must be assoiated with a Desriptor. A single

Element ontains values for one instane of the Desriptor. For example, if the Desriptor TIME has element type

Value with Unertainty (VU) and element dimensionality 2, with omponents TIME and TIME UNC, then an

Element assoiated with TIME has one value of the TIME and one value for TIME UNC. If the Desriptor DET

has element type Value (V) and element dimensionality 2, then a single Element of DET has two Value Elements.

The simplest kind of element is an element of type Value and dimensionality 1, whih is a single value (numeri or

string aording to the assoiated Desriptor's data type.)

The speial element type REG applies only to 2-dimensional elements and is a string de�ning a region in PROS

Regions syntax. With the exeption of this element type, all d-dimensional elements onsist of unoupled element

omponents for eah of the d dimensions. The most general element omponent is a Value plus its Unertainties or

Ranges.

Eventually, we propose to support three di�erent unertainties: statistial, systemati zero point, and systemati

sale. In addition, we de�ne a total unertainty whih is a funtion of these three. We also use the same paradigm

to reord bin ranges. Our approah is to treat the systemati unertainties as separate add-ons, with our default de-

sription being a single value and unertainty, whih is to be interpreted as a statistial unertainty if the systematis

are present and as a total unertainty if they are not.

� If no unertainty at all is present, the ode is V (Value).

� The most exible representation is the Interval Unertainty (I) whih uses an Interval to de�ne the minimum

and maximum values within the signi�ane range. If the minimum value is zero or less, the measurement is

termed an upper limit. If the Value omponent has value v, and the Interval has min and max of v

1

and v

2

,

then for a losed interval type

v

1

� v � v

2

:

Note than the range enter (v

1

+ v

2

)=2 is not neessarily equal to v.

� A seond, more ommon representation is the Two Sided Unertainty (T), in whih the o�sets �

+

; �

�

from the

nominal value are given. This has the advantage that it may be often used as a Fixed Unertainty. In terms

of the Interval Unertainty,

v

1

= v� = �

�

; v

2

= v + �

+

:

� The One Sided Unertainty (U) is the same as the two sided, but both upper and lower unertainties are equal.

v

1

= v � �; v

2

= v + �:

� The Bin (B) is the same as the one sided unertainty, but the full bin width w rather than the half bin width �

is given. This is more usually employed when the interpretation is a binned dataset rather than an unertainty.

v

1

= v � w=2; v

2

= v + w=2:

� The Bin Start (S) is the same as the Bin, but the Value is deemed to be the start of the bin rather than the

enter:

v

1

= v; v

2

= v + w:

This representation is often used for light urves.

28

� The Range (R) is the same as the Interval Unertainty but there is no assoiated Value. If a Value is required,

it is assumed to be v = (v

1

+ v

2

)=2.

� The sale unertainty is always represented as a single nonnegative dimensionless real value (K) so that the

implied range around the value v is

v

1

= v(1�K); v

2

= v(1 +K):

� We also want to support a two sided sale (L) with di�erent upper and lower sale errors, whih arises when

we take the logarithm of a Desriptor with di�erent upper and lower unertainties.

� Finally, sometimes data is just provided in the form of detetions and upper limits. We de�ne an element type

Z whih onsists of a value v

d

and a limit ag f , with the meaning

iffthenv = v

d

elsev

1

= 0; v

2

= v

d

:

However, I don't propose that we support this element type initially.

Eah of these range types an be Fixed, in whih ase we append the letter F to the element type. We will further

require that elements in a Table Column have a �xed Interval Type for all ells of the olumn.

ELEMENT

Element Type
Element dimensionality d

Element type

2D Region
Element Component

d
1

Element type

V KI R B S T U

Value Value

Min

Max

Min

Max Value

Width

Value

Width

Value

Upper

Lower

Value

Unc

Interval type

Value

Scale Unc

Value

Upper sc

Lower sc

L

Spec String

Value Interval Range Bin Bin
Start

Two sided
Unc.

One sided

Unc.

One sided
scale.

Two sided
scale.

Figure 8: Data Model 5: The Element objet, used to store the atual values. There may be many elements desribed

by a single Desriptor. There is one Element omponent for eah dimension of the element, exept if systemati

unertainties are inluded in whih ase there may be up to three Element omponents for eah dimension.

29

We will later add to the Desriptor objet a systemati zero point unertainty type and a systemati sale

unertainty type, the default values of whih are null (not present). The legal values are the same as for the Element

type, and if they are present the usual values are UF for the zero point unertainty and KF for the sale unertainty.

4.11 Region Desription

For the two dimensional region desriptions we would like to support those in urrent systems, namely:

� Bitmap: appropriate for a binned dataset, provides a list of the pixels in the region.

� Polygon: an ordered list of n points desribing a losed polygonal region.

� Shape: A parameterized shape, inluding the ases Cirle, Annulus, Ellipse, Box, Pie.

Bitmaps are not yet supported.

We an desribe the Shape with the following parameters:

� Shape type: elliptial or retangular.

� Shape enter x0, y0.

� Shape radial range r1, r2, interval type. If r1=0, have a Cirle or Box. If r1>0, have an Annulus or annular

box.

� Aspet ratio a, ratio of major to minor axis. If a=1 have a irle or square; if a<1 have an ellipse or retangle.

� Shape orientation theta0; measures angle between major axis and x axis. Irrelevant if a=1.

� Shape azimuthal range theta1, theta2, interval type. The default is theta1=0 and theta2=360 deg. Any other

value gives you a pie or setor (for shape type elliptial; shape type retangular may not support setors).

4.12 Table Data Cell

A Data Cell is assoiated with a Data Desriptor and ontains one set of Elements for that Data Desriptor. The

number of elements in the ell is equal to the number of elements in the array spei�ation for the data desriptor;

in partiular, if there is no array spei�ation (data Desriptor array dimensionality equal to zero) there is exatly

one element in the ell. The elements in the ell an be aessed via pixel number or element number as disussed

in the setion on array spei�ations and axes.

4.13 Table Row

In a Table Data setion, there is some spei�ed number r of Table Rows. Eah Row may be thought of as ontaining

one Data Cell for eah of the Column Data Desriptors. More preisely, there is one Data Cell assoiated with eah

ombination of row and olumn.

4.14 Desriptor Groups

A desriptor group is a simple objet with a name and an array of desriptor pointers. It allows users to manipulate

and refer to related olletions of desriptors. API and kernel routines will be provided to de�ne and aess suh

desriptor groups.

30

5 Data Subspae

5.1 Introdution

What distinguishes a photon event list from a table in an ordinary database? The rows of the event list represent

individual, asynhronous events. They annot be interpreted without knowing the �lter through whih those events

were seleted. Suppose we detet photons only between times 100 and 200. Is this beause the soure ared during

that time, or beause the satellite was only looking during that time period? To be more preise, if you just have

an ordinary table of rows, what you are missing is the information about what rows would NOT have been allowed

in the table - in the photon event list ase, whih events would NOT have been deteted. We are then led to the

onept of the data subspae: in the spae of all possible data, what subspae is being sampled by the urrent table?

This idea is losely onneted with the idea of �ltering. The data subspae is simply the �lter that has been

applied to the data. However, we're not just talking about user �lters applied during proessing, but also impliit

�lters applied by the at of observation at a partiular time with a partiular instrument. If the user then �lters the

data further, the new data subspae is simply the intersetion of the �lter with the old subspae.

If two datasets are merged, the new data subspae is the union of the old ones. In this ase, however, we lose

some information: the data subspae paradigm doesn't retain information about whih of the original subspaes a

partiular row belonged to. This is the usual problem with binning data together, whih we an illustrate with a

familiar example: ombining two pulse height spetra. Suppose we have two event lists E1 and E2 with the following

data, representing events from two di�erent ACIS hips whih are distinguished by di�erent ranges of detetor

position DETPOS:

E1 subspae: DETPOS=[0:1024,0:1024℄

E1 table:

DETPOS PHA TIME

100 245 8 4922.2

231 928 17 4812.5

....

E2 subspae: DETPOS=[1024:2048,0:1024℄

E2 table:

DETPOS PHA TIME

1241 621 22 4924.3

1782 212 7 4092.2

...

If we extrat two PHA histograms P1 and P2, retaining only pulse heights from 2 to 100 and seleting a region

near the boundary of the hips where we think there is a soure, we get:

P1 subspae: DETPOS=[1000:1024,800:825℄, PHA=[2:100℄

P1 table:

PHA COUNTS

2 0

3 4

....

100 1

P2 subspae: DETPOS=[1024:1124,800:825℄, PHA=[2:100℄

P2 table:

31

PHA COUNTS

2 1

3 2

...

If we then merge these two datasets to form P3, we get:

P3 subspae: DETPOS=[1000:1124,800:825℄, PHA=[2:100℄

P3 table:

PHA COUNTS

2 1

3 6

....

A tool to build the XSPEC response matrix would then hek the DETPOS region to see whih hips were

involved. In the ase of P3, it would see that 20 perent of the region was on one hip and 80 perent on the other,

and would average the two response matries in that proportion. We have lost any information about whih ounts

ame from whih hip. If instead we merge the lists E1 and E2 to form a new event list whih retains the DETPOS

olumn, and then �lter on position and PHA but don't bin to make the histograms, we get E3:

E3 subspae: DETPOS=[1000:1124,800:825℄, PHA=[2:100℄

E3 table:

DETPOS PHA

1012 814 8

1182 803 18

...

although the data subspae is the same as for P3, the information about whih hip is involved for a given event

is still available via the DETPOS value for the given event.

In general, any tabular data may have a data subspae whih desribes the range of data for whih the table

applies. The desriptors in the data subspae are not neessarily the same as the desriptors in the table itself - see

the example of P3 above in whih DETPOS is in the data subspae but not in the table.

5.2 Unions of subspaes

A more ompliated ase of merging subspaes is when we wish to use `inompatible' �lters. For example, perhaps

the seond hip has unreliable data in PHA hannels 2 to 10, so we want to apply a di�erent PHA �lter to it. We

�lter E1 and E2 with di�erent �lters and then merge them to make E4:

E4 subspae:

Component 1: DETPOS=[1000:1024,800:825℄, PHA=[2:100℄

Component 2: DETPOS=[1024:1124,800:825℄, PHA=[11:100℄

E4 table:

DETPOS PHA

1012 814 8

1182 803 18

...

When two �lters (subspaes) are unioned (logial OR), we desribe them as di�erent `omponents' of the subspae.

What if the di�erent �lters involve �ltering on entirely di�erent quantities? Consider the ase when E1 is �ltered

on PHA and E2 is �ltered on TIME.

32

E5 subspae:

Component 1: DETPOS=[1000:1024,800:825℄, PHA=[2:100℄

Component 2: DETPOS=[1024:1124,800:825℄, TIME=[4823.2:4890.1),[5012.4,5100.0)

E5 table:

DETPOS PHA TIME

1012 814 8 4902.54

1182 803 18 4823.80

...

To simplify the treatment, we note that we an make the quantities involved in the two omponents the same by

adding the trivial �lters TIME=[�1 :1℄ and PHA=[�1 :1℄ to omponents 1 and 2 respetively. Doing this lets

us store a single list of the desriptors involved in a data subspae, instead of requiring us to maintain separate lists

for eah omponent.

5.3 General de�nition

1. A Data Subspae (DSS) D onsists ofDC = 0+ Data Subspae Components (DSS Components) C(i); i = 1; DC

and a list of DA = 0+ Data Subspae Data Desriptors or Data Subspae Axis Groups A(j); j = 1; DA. (Note:

The notation n

C

= 0+ means that there are zero or more of the entities in question, and that the number of

entities will be denoted by DA.) There is usually only one DSS Component in a DSS, i.e. DC=1. The name

Axis Group reets the fat that the data subspae ould be represented by an array with those axis groups

(although the pixel values of that array are not de�ned).

2. A Data Subspae Data Desriptor or Data Subspae Axis Group is a named objet whih has the same

properties as the generi Data Desriptor de�ned above, partiularly inluding a name and a dimensionality.

An example of a data subspae axis group might be TIME, or POSITION. However, a Data Subspae Data

Desriptor may not have assoiated array Axis Group Desriptors, or array Axis Group Coordinate Desriptors.

Further, it must have array dimensionality 1. An important distintion between the DD for Table Data and

the DD for a Data Subspae is that the array dimension n

1

is to be interpreted as the maximum dimension

for any data ell, rather than the atual dimension for eah data ell (see below). However, the Data Subspae

Data Desriptor is allowed to have a Data Coordinate Transform and a Data Coordinate Desriptor.

3. A Data Subspae Component C(i) onsists of DA DSS Data Cells RV (i; j), one for eah axis group of the

parent data subspae.

4. The Data Cells of a data subspae omponent onsist of n

R

= 0+ Region ElementsR(i; j; k); k = 1; n

R

(i; j). An

example of suh a Data Cell is a set of Good Time Intervals, or a spatial mask onsisting of several omponents.

The di�erent Data Cells orresponding to di�erent DSS Components may have di�erent values of n

R

, unlike

the Data Cells for di�erent rows of a Table Data setion whih must all have the same array sizes. Sine there

is usually only one DSS omponent, this doesn't usually matter.

5. A Data Cell may be de�ned impliitly as a World Coordinate Data Cell. For instane, if the Data Subspae Axis

Group is pixel sky oordinate position SKYPOS (X,Y), and this has a Data Coordinate Desriptor EQPOS

(RA,DEC) related to it by a Data Coordinate Transform, then we may express the Data Cell as a set of region

elements attahed to EQPOS (the Data Coordinate Desriptor) rather than SKYPOS (the Data Desriptor) -

say, a irle expressed as `(14:04:11 -00:23:12 6.2')', i.e. a 6.2 armin irle around the spei�ed sexagesimal

RA and De, instead of `(4212.2 5123.2 42.1)' in pixels. I haven't inluded this explitly in the diagrams; in

the FITS implementation I have suggested parallel keywords DSn and DSCn for regions expressed in the pixel

and world systems respetively.

33

6. A Region Element R(i; j; k) in a data subspae data ell is a range element if the dimensionality of the orre-

sponding Data Subspae Axis Group is 1, and is a 2D Region Element in the dimensionality of the orresponding

Data Subspae Axis Group is 2.

From a set-theory point of view,

RV (i; j) = [

k

R(i; j; k)

and

C(i) = \

j

RV (i; j)

and

D = [

i

C(i) =

[

i

0

�

\

j

([

k

R(i; j; k))

1

A

34

Data Subspace

A1

A2

A3

R111 R112

R121

R131
R131

R121

R211

R221

R231

C1 C1

C2

RV11

Figure 9: Illustration of a data subspae.

35

7. A data point P, onsisting of values V

j

, j = 1; DA, is said to be `in' the data subspae if it is in any one of the

omponents. It is in a omponent if it is in all of that omponent's data ells. It is in a data ell if it is in any

of the data ell's region elements.

8. The intersetion of two data subspaes D

1

and D

2

is alulated as follows: First extend the lists of axis groups

of eah subspae to be the same. Then

D

1

\D

2

=

[

i

0

�

\

j

([

k

R

1

(i; j; k))

1

A

\

[

m

0

�

\

j

([

n

R

2

(m; j; n))

1

A

or

D

1

\D

2

=

[

i

[

m

0

�

\

j

�

[

k

[

n

R

1

(i; j; k)R

2

(m; j; n)

�

1

A

The ase of a single point an be understood as a speial ase of this. Consider the value omponents V

j

as

losed zero-length ranges [V

j

: V

j

℄; then P is a data subspae with one omponent and R(i; j; k) = [V

j

: V

j

℄.

The above formula tells us to interset eah omponent with the orresponding range.

Examples of intersetion of data subspaes: First, let's take the point ase. Let the data subspae be that of E5

above:

Component 1: DETPOS=[1000:1024,800:825℄, PHA=[2:100℄, TIME=[:℄

Component 2: DETPOS=[1024:1124,800:825℄, PHA=[:℄, TIME=[4823.2:4890.1),[5012.4,5100.0)

Then let P be the point (DETPOS,PHA,TIME)=((1100,812),200,5050). We have:

A(1) = DETPOS

A(2) = PHA

A(3) = TIME

R(1,1,1) = Box 1000:1024, 800:825

R(1,2,1) = [2:100℄

R(1,3,1) = [:℄

R(2,1,1) = Box 1024:1124, 800:825

R(2,2,1) = [:℄

R(2,3,1) = [4823.2,4890.1)

R(2,3,2) = [5012.4,5100.0)

V(1) = (1100,812)

V(2) = 200

V(3) = 5050

So �rst we interset P with omponent 1. The intersetion is null, sine V(1) has no overlap with R(1,1,1) and

V(2) has no overlap with R(1,2,1). Next we interset with omponent 2. The intersetion of V(1) with R(2,1,1) is

V(1) itself; similarly for V(2). V(3) is outside R(2,3,1) but inside R(2,3,2) and thus inside their union as required.

So the intersetion of P with omponent 2 of the subspae is P itself. Thus, P is inside the subspae.

Now let's take the intersetion of two �lters. Let the seond spae be a simple time �lter with two intervals,

TIME=[4000:4800℄,[6000:7000℄. To do the intersetion we add the missing axes:

R(1,1,1)=[:,:℄

R(1,2,1)=[:℄

R(1,3,1)=[4000:4800℄

R(1,3,2)=[6000:7000℄

36

Then evaluating the intersetion equation gives the expeted result:

A(1) = DETPOS

A(2) = PHA

A(3) = TIME

R(1,1,1) = Box 1000:1024, 800:825

R(1,2,1) = [2:100℄

R(1,3,1) = [4000:4900℄

R(1,3,2) = [6000:7000℄

R(2,1,1) = Box 1024:1124, 800:825

R(2,2,1) = [:℄

R(2,3,1) = [4823.2,4800.0℄

Note that the seond element of the TIME region vetor in omponent 2 has disappeared, sine it had no overlap

with the new �lter. The interval type of the �rst element has hanged, it is now a losed interval. If the �lter had

been [4000:4700℄, the entire seond omponent would have been removed.

6 Header

The ASC Table Header ontains metadata analogous to FITS header keywords. We allow ASC header attributes to

have all the properties of a Desriptor, in ontrast to FITS header keywords whih do not have the full properties of

a FITS table olumn.

6.1 Key Data Desriptor

A Key Data Desriptor has the same struture as a Table Column Data Desriptor. However, in the urrent

implementation we will not support array dimensionality greater than 1 or axis group desriptors (f. DSS Data

Desriptor).

37

6.2 Grouping Desriptors

A new feature of the design is the idea of grouping desriptors. A group is a olletion of related desriptors; its

purpose is to allow software to display and selet related information together.

By default, a blok has only one group, the default group. It may have arbitrarily many named groups whih

ollet together key, olumn, oordinate and �lter desriptors. For instane, a 'time' group might inlude various

timing keywords and the TIME table olumn. A group is NOT itself a kind of desriptor, and in partiular group

names do not need to be distint from desriptor names.

Keys may be related to other `parent' data desriptors, either other attributes or olumns or data subspae axis

desriptors. Attributes that are related to olumns are alled olumn attributes. Attributes that are related to data

subspae axes are alled data subspae attributes. All other attributes are table attributes. A generi FITS header

keyword is a table attribute; the idea of tying header keywords to partiular olumns is new. A table attribute whih

is related to another table attribute may be onsidered as part of a group (equivalene lass) of table attributes; this

allows us to group header keywords and refer to them by groups rather than individually.

7 DM Images

7.1 Images and Tables

A DM Image is an DM Table with a single Table Column Data Desriptor whose array dimensionality n > 0 and

with a single Row. Speial aess routines are provided for DM Images. Any single array Data Cell in a table may

also be treated as a DM Image; to instantiate it as suh an image, opy it to a new DM table together with the DSS,

the Table Attributes, as well as the Data Desriptor and Column Attributes for its own Column, but disarding the

other rows for the olumn and disarding the other olumn data desriptors, ells, and olumn attributes.

I illustrate the struture of an DM Image in the aompanying diagram; note that from the OO point of view

this is just an instane of the DM Table, not a separate model.

8 Case studies and examples

8.1 FITS ase study: PSPC o� axis histogram �le

An ASCII dump of a Rosat PSPC FITS �le for the o� axis histogram for an extrated soure is reprodued below;

I then interpret it in terms of the data model.

XTENSION= 'BINTABLE' / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 8 / width of table in bytes

NAXIS2 = 14 / number of rows in table

PCOUNT = 0 / size of speial data area

GCOUNT = 1 / one data group (required keyword)

TFIELDS = 2 / number of fields in eah row

TTYPE1 = 'OFF_AX_RAD' / Off-axis grid point for histogram bin (armin)

TFORM1 = '1E ' / data format of the field: 4-byte REAL

TUNIT1 = 'armin ' / physial unit of field

TTYPE2 = 'FRAC_TIME' / Fration of time spent by soure in bin

TFORM2 = '1E ' / data format of the field: 4-byte REAL

TUNIT2 = 'NONE ' / physial unit of field

EXTNAME = 'OAH005 ' / Detet extension-asp histogram for given soure

38

DATA SUBSPACE HEADER

DSS

Component

Data Descriptor

DSS Data Descriptor

Data Descriptor

Attribute

DSS

Data Cell

Attribute

Data Cell Data Cell

Element

Attribute

Element

Data

Element

DC

DA

DA DC

1

1 r

N
AN

H

Name

DSS Region

ASC Image

IMAGE DATA

Image

Image

Figure 10: Data Model 7: DM Image Model, idential to Table Model but without Table Row and with only one

Column Desriptor (Image Desriptor).

CONTENT = 'SOURCE ' / data ontent of file

ORIGIN = 'USRSDC ' / origin of proessed data

DATE = '13/07/94' / FITS reation date (DD/MM/YY)

TELESCOP= 'ROSAT ' / mission name

INSTRUME= 'PSPCC ' / instrument name

OBS_MODE= 'POINTING' / obs mode: POINTING,SLEW, OR SCAN

IRAFNAME= 'rp110590n00_oah005.tab' / IRAF file name

MJDREFI = 48043 / MJD integer SC lok start

MJDREFF = 8.79745370370074E-01 / MJD fration SC lok start

ZERODATE= '01/06/90' / UT date of SC start (DD/MM/YY)

ZEROTIME= '21:06:50' / UT time of SC start (HH:MM:SS)

RDF_VERS= '2.9 ' / Rationalized Data Format release version number

RDF_DATE= '13-JUL-1994' / Rationalized Data Format release date

PROC_SYS= 'SASS7_2_0' / Proessing system

PROCDATE= '2-JUN-1994 11:20:34' / SASS SEQ proessing start date

REVISION= 2 / Revision number of proessed data

FILTER = 'NONE ' / filter id: NONE OR BORON

OBJECT = 'XRT/PSPC PSF AR LAC' / name of objet

RA_NOM = 3.320239E+02 / nominal RA (deg)

DEC_NOM = 4.551389E+01 / nominal DEC (deg)

ROLL_NOM= -1.349511E+02 / nominal ROLL (deg CCW North)

EQUINOX = 2.000000E+03 / equinox

OBS_ID = 'CA110590P.N10' / observation ID

39

ROR_NUM = 110590 / ROR number

OBSERVER= 'MPE, ROSAT-TEAM' / PI name

SETUPID = 'NOMINAL ' / Instrument setup

DATE-OBS= '20/06/90' / UT date of obs start (DD/MM/YY)

TIME-OBS= '11:24:43.000' / UT time of obs start (HH:MM:SS)

DATE_END= '20/06/90' / UT date of obs end (DD/MM/YY)

TIME_END= '13:07:12.000' / UT time of obs end (HH:MM:SS)

MJD-OBS = 4.806248E+04 / MJD of seq start

SCSEQBEG= 1606667 / SC seq start(se)

SCSEQEND= 1612816 / SC seq end (se)

NUM_OBIS= 2 / Number of obs intervals (OBIs)

LIVETIME= 1.884999E+03 / Live time

DTCOR = 9.602644E-01 / Dead time orretion fator

ONTIME = 1.963000E+03 / On time

MPLSX_ID= 5 / Soure number from merged soure list (MPLSX)

EFFAREA = 1.0000E+00 / Effetive area saling fator

QUALITY = 0 / Quality of data (0 = good data)

RADECSYS= 'FK5 ' / WCS for this file

OFFAX = 1.478056E+01 / Off-axis angle of soure in armin

COMMENT

COMMENT The following keywords are required in order to onform

COMMENT to the Offie of Guest Investigator Programs standard:

COMMENT

AREASCAL= 1.0000E+00 / Area saling fator

BACKFILE= 'NONE ' / No bakground file

BACKSCAL= 1.0000E+00 / Bakground saling fator

CORRFILE= 'NONE ' / No orretion file

CORRSCAL= 1.0000E+00 / Corretion file saling fator

RESPFILE= 'NONE ' / BLDRSP response file name (default)

ANCRFILE= 'NONE ' / BLDRSP anillary response file name (default)

XFLT0001= ' ' / Required keyword

PHAVERSN= '1992A ' / Version # of OGIP file speifiation

POISSERR= T / Poissonian errors appropriate

SYS_ERR = 0.0 / No systemati error

CHANTYPE= 'PI ' / Gain-orreted hannels used

DETCHANS= 256 / Total number of PHA hannels available

COMMENT

COMMENT End required OGIP keywords

COMMENT

COMMENT This extension ontains the off-axis histogram

COMMENT for the soure given in the header.

HISTORY

HISTORY SASS file used: SPCBF.SEQ

HISTORY

HISTORY Correspondene with SASS variables:

HISTORY

HISTORY OFF_AX_RAD = OFF_SPB

HISTORY FRAC_TIME = OHS_SBP

OFF_AX_RAD FRAC_TIME

0 0

5 0

40

10 2.17989E-04

15 0.73768

20 0.2621

25 0

30 0

35 0

40 0

45 0

50 0

55 0

57.5 0

60 0

What does this �le ontain? There's a lot of stu� all mixed together. We might desribe it as follows:

Table OAH005(2 ols, 14 rows)

Colname OFF_AX_RAD FRAC_TIME

Datatype Real(4) Real(4)

Unit none none

Elt type V V

Elt dim 1 1

Disp none none

Des 'Off-axis grid point for histogram bin (armin)'

'Fration of time spent by soure in bin'

Component name (same as olname)

Array dim 0 0

Cells: 1 element per ell

Elements: 1 value per element (type V, dimension 1)

Values:

0 0

5 0

10 2.17989E-04

15 0.73768

20 0.2621

25 0

30 0

35 0

40 0

45 0

50 0

55 0

57.5 0

60 0

Data Subspae(4 axes)

TIME [1606667:1612816)

Coordinate: Origin = 0

Value = JD 2448044.379745370370074 d

41

Delta = 1

Unit = s

Comment SC seq start(se)

Corretion Fator 0.96026 (DTCOR)

RA/DEC Region not given (would be nie!)

2D Coordinate: Origin = not given

Value = J2000 (332.0239, +45.51389)

Delta = not given

Unit = deg

The following data subspae axes are not expliitly present in the file:

OFF_AX_RAD [0:60℄

Unit = armin

Comment Off-axis grid point for histogram bin

FRAC_TIME [0:1℄

Unit = none

Comment Fration of time spent by soure in bin

The following header ards from the file are not retained

in our 'model' version as header ards per se beause

they ontain information about the struture of the

file or the attributes of its data axes:

\small

\begin{verbatim}

Cards from FITS standards, mapped to table struture:

XTENSION= 'BINTABLE' / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 8 / width of table in bytes

NAXIS2 = 14 / number of rows in table

PCOUNT = 0 / size of speial data area

GCOUNT = 1 / one data group (required keyword)

TFIELDS = 2 / number of fields in eah row

TTYPE1 = 'OFF_AX_RAD' / Off-axis grid point for histogram bin (armin)

TFORM1 = '1E ' / data format of the field: 4-byte REAL

TUNIT1 = 'armin ' / physial unit of field

TTYPE2 = 'FRAC_TIME' / Fration of time spent by soure in bin

TFORM2 = '1E ' / data format of the field: 4-byte REAL

TUNIT2 = 'NONE ' / physial unit of field

EXTNAME = 'OAH005 ' / Detet extension-asp histogram for given soure

Cards from OGIP rules, mapped to subspae and oordinate info:

MJDREFI = 48043 / MJD integer SC lok start

MJDREFF = 8.79745370370074E-01 / MJD fration SC lok start

ZERODATE= '01/06/90' / UT date of SC start (DD/MM/YY)

ZEROTIME= '21:06:50' / UT time of SC start (HH:MM:SS)

RA_NOM = 3.320239E+02 / nominal RA (deg)

42

DEC_NOM = 4.551389E+01 / nominal DEC (deg)

ROLL_NOM= -1.349511E+02 / nominal ROLL (deg CCW North)

EQUINOX = 2.000000E+03 / equinox

DATE-OBS= '20/06/90' / UT date of obs start (DD/MM/YY)

TIME-OBS= '11:24:43.000' / UT time of obs start (HH:MM:SS)

DATE_END= '20/06/90' / UT date of obs end (DD/MM/YY)

TIME_END= '13:07:12.000' / UT time of obs end (HH:MM:SS)

MJD-OBS = 4.806248E+04 / MJD of seq start

SCSEQBEG= 1606667 / SC seq start(se)

SCSEQEND= 1612816 / SC seq end (se)

LIVETIME= 1.884999E+03 / Live time

DTCOR = 9.602644E-01 / Dead time orretion fator

ONTIME = 1.963000E+03 / On time

When writing this �le bak out, all of the above ards would be generated automatially by the FITS writing

layer; there's no need for any of the software beyond the IO layer to ever deal with them.

The remaining header ards ome in a number of groups, whih we an't dedue from the present struture of

the �le:

Ungrouped header ards

OFFAX 14.78056

Unit armin

Comment Nominal off-axis angle of soure

Header group PROCESSING

CONTENT = 'SOURCE ' / data ontent of file

ORIGIN = 'USRSDC ' / origin of proessed data

DATE = '13/07/94' / FITS reation date (DD/MM/YY)

IRAFNAME= 'rp110590n00_oah005.tab' / IRAF file name

RDF_VERS= '2.9 ' / Rationalized Data Format release version number

RDF_DATE= '13-JUL-1994' / Rationalized Data Format release date

PROC_SYS= 'SASS7_2_0' / Proessing system

PROCDATE= '2-JUN-1994 11:20:34' / SASS SEQ proessing start date

REVISION= 2 / Revision number of proessed data

Header group OBSERVATION_DETAILS

TELESCOP= 'ROSAT ' / mission name

INSTRUME= 'PSPCC ' / instrument name

OBS_MODE= 'POINTING' / obs mode: POINTING,SLEW, OR SCAN

FILTER = 'NONE ' / filter id: NONE OR BORON

OBJECT = 'XRT/PSPC PSF AR LAC' / name of objet

OBS_ID = 'CA110590P.N10' / observation ID

OBSERVER= 'MPE, ROSAT-TEAM' / PI name

NUM_OBIS= 2 / Number of obs intervals (OBIs)

ROLL_NOM= -134.95

Header group ROSAT_SPECIFIC

ROR_NUM = 110590 / ROR number

SETUPID = 'NOMINAL ' / Instrument setup

MPLSX_ID= 5 / Soure number from merged soure list (MPLSX)

QUALITY = 0 / Quality of data (0 = good data)

Header group OGIP_COMPAT / These keywords may be ignored by our software

43

EFFAREA = 1.0000E+00 / Effetive area saling fator

COMMENT

COMMENT The following keywords are required in order to onform

COMMENT to the Offie of Guest Investigator Programs standard:

COMMENT

AREASCAL= 1.0000E+00 / Area saling fator

BACKFILE= 'NONE ' / No bakground file

BACKSCAL= 1.0000E+00 / Bakground saling fator

CORRFILE= 'NONE ' / No orretion file

CORRSCAL= 1.0000E+00 / Corretion file saling fator

RESPFILE= 'NONE ' / BLDRSP response file name (default)

ANCRFILE= 'NONE ' / BLDRSP anillary response file name (default)

XFLT0001= ' ' / Required keyword

PHAVERSN= '1992A ' / Version # of OGIP file speifiation

POISSERR= T / Poissonian errors appropriate

SYS_ERR = 0.0 / No systemati error

CHANTYPE= 'PI ' / Gain-orreted hannels used

DETCHANS= 256 / Total number of PHA hannels available

COMMENT

COMMENT End required OGIP keywords

COMMENT

Header group COMMENTS

COMMENT This extension ontains the off-axis histogram

COMMENT for the soure given in the header.

HISTORY

HISTORY SASS file used: SPCBF.SEQ

HISTORY

HISTORY Correspondene with SASS variables:

HISTORY

HISTORY OFF_AX_RAD = OFF_SPB

HISTORY FRAC_TIME = OHS_SBP

How would we redesign this �le to take more advantage of the data model while remaining ompatible with

software that expets the old format? While I do not expet that we will be writing software to regenerate PSPC

standard data produts in this way, it's a useful exerise to show what is needed to add the extra struture.

� We add omments to denote Header Groups, grouping the table attributes. This ould be used by browsers

to organize the user's view of the data. It would be nie for software to be able to use suh header groups,

but there is a risk that some FITS readers will mangle the order of the header keywords, mixing up the group

memberships. I still feel that it's an enhanement worth having, with the warning to users that if they pass

the �les through other software they may lose that information.

� The other way of making header groups is to expliitly add named ards. This is omparatively ineÆient but

may be the way to go when it's important that the linkage be robust. This is illustrated with the DAREL

keywords for OFFAX and ROLL NOM.

� The dataset is atually binned data; the OFF AX RAD olumn ontains bins whih for some perverse reason

are uneven in size near the ends. I ould have de�ned a speial element type to denote bins where the boundaries

are dedued to be half way to the next entry, but this would require the software to handle more than one

row at a time. I prefer to aept the overhead of the extra two olumns COL1 LO and COL1 HI, turning

OFF AX RAD into a olumn of element type T (two sided unertainty).

44

� We will store the extration region in the data subspae header. The information inludes the region spei�a-

tion in sky pixel oordinates and the transformation from sky pixel oordinates to RA and De, the latter being

opied from the original �le. This gives us a more logial plae to put the info now stored in RA NOM and

DEC NOM. If we had the region spei�ation in RA and De instead of pixels, we would store it in keyword

DSC1 instead of DS1.

� The preferred olumns are OFF AX RAD and TIME; but we don't need to inlude PREF1 and PREF2

keywords sine these are the only two olumns at the data model level and they are in the orret order.

XTENSION= 'BINTABLE' / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 16 / width of table in bytes

NAXIS2 = 14 / number of rows in table

PCOUNT = 0 / size of speial data area

GCOUNT = 1 / one data group (required keyword)

TFIELDS = 4 / number of fields in eah row

TTYPE1 = 'OFF_AX_RAD' / Off Axis Radius

TFORM1 = '1E ' / data format of the field: 4-byte REAL

TUNIT1 = 'armin ' / physial unit of field

TTYPE2 = 'COL1_LO ' / Lower Unertainty

TFORM2 = '1E ' / 4 byte real

TUNIT2 = 'armin ' /

TTYPE3 = 'COL1_HI ' / Upper Unertainty

TFORM3 = '1E ' / 4 byte real

TUNIT3 = 'armin ' /

TTYPE4 = 'FRAC_TIME' / Frational Exposure Time

TFORM4 = '1E ' / data format of the field: 4-byte REAL

TUNIT4 = ' ' / physial unit of field

EXTNAME = 'OAH005 ' / Off Axis Histogram

TDISP1 = 'F8.2 ' / Format to display OFF AX RAD

TDISP4 = 'F8.6 ' / Format to display FRAC TIME

TLMIN1 = 0.0 / Valid range for olumns

TLMAX1 = 60.0 /

TLMIN4 = 0.0 /

TLMAX4 = 1.0 /

COMMENT

COMMENT ASC Table Keywords

COMMENT

DCFIELDS= 2 / Number of logial olumns

DCETYP1 = 'T ' / Two sided unertainty

DCITYP1 = '[) ' / Interval type

COMMENT

COMMENT ASC Data Subspae Keywords

COMMENT

DSNAXIS = 1 / Number of data subspae axes

DSNAM1 = 'SKYPOS ' / Sky pixel position

DSDIM1 = 2 / Dimension of DSNAM1

DSTYP1 = 'X ' / First omponent of DSNAM1

DSTYP2 = 'Y ' / Seond omponent of DSNAM1

DSUNIT1 = 'pixel ' /

DSCNAM1 = 'EQPOS ' / Coordinate system on DSNAM1

45

DSCTYP1 = 'RA---TAN' / Transform for axis 1

DSCTYP2 = 'DEC--TAN' / Transform for axis 2

DSCUNI1 = 'deg ' /

DSCRVL1 = 332.0239 / Referene RA value (RA_NOM)

DSCRVL2 = 45.5138 / Referene De value (DEC_NOM)

DSCRPX1 = 4096.5000 / Referene X value

DSCRPX2 = 4096.5000 / Referene Y value

DSCDLT1 = -0.0124 / Deg per pixel

DSCDLR2 = 0.0124 / Deg per pixel

DS1 = ' 4087.3 4012.3 43.2' / Extration region in X,Y oords

DSTYP3 = 'TIME ' / Mission time

DSUNIT3 = 's ' /

DS2L1 = 1606667.0 / Start time

DS2U1 = 1612816.0 / Stop time

DSITYP3 = '[) ' / Interval type for TIME

COMMENT

COMMENT Alternative syntax for the above three keywords would be:

COMMENT DS2 = '[SCSEQBEG:SCSEQEND)'

COMMENT

DSCTYP3 = 'DATE ' / Calendar date

DSCDLT3 = 1.15741E-05 / Days per seond

DSCRVL3 = 48043.879745370370074 / MJD of SC lok start

DSCRPX3 = 0.0 / SC lok start

DSCUNI3 = 'd ' /

DSTYP4 = 'OFF_AX_RAD' / Range defaults to TLMIN1/TLMAX1

DSTYP5 = 'FRAC_TIME ' /

COMMENT

COMMENT ASC Table Attributes

COMMENT

COMMENT We only need to use explit DANAMn keywords when we

COMMENT want to add extra information to a keyword.

COMMENT

DANAM1 = 'OFFAX' / Attribute

OFFAX = 1.478056E+01 / Off-axis angle of soure in armin

DAUNI1 = 'armin' / Unit of DANAM1

DAREL1 = 'OFF_AX_RAD' / Keyword OFFAX is bound to olumn OFF AX RAD

DANAM2 = 'ROLL_NOM' / Attribute

ROLL_NOM= -1.349511E+02 / nominal ROLL (deg CCW North)

DAUNI2 = 'deg' /

DAREL2 = 'SKYPOS' / ROLL_NOM bound to DSS axis SKYPOS

DANAM3 = 'SRC_OFF_AX_RAD' / Same as OFFAX,

DAVAL3 = 1.478056E+01 / but illustrating a name longer than 8 hars

DAUNI3 = 'armin ' /

DANAM4 = 'ONTIME ' / Denote the fat that the keywords named

DAREL4 = 'TIME ' / are tied to the TIME information, so if that

DANAM5 = 'DTCOR ' / beomes invalid so do these.

DAREL5 = 'TIME ' / Debatable whether we would atually bother

DANAM6 = 'LIVETIME' / to add these linkages in this ase.

46

DAREL6 = 'TIME ' /

COMMENT

COMMENT Header Group PROCESSING

COMMENT

CONTENT = 'SOURCE ' / data ontent of file

ORIGIN = 'USRSDC ' / origin of proessed data

DATE = '13/07/94' / FITS reation date (DD/MM/YY)

IRAFNAME= 'rp110590n00_oah005.tab' / IRAF file name

RDF_VERS= '2.9 ' / Rationalized Data Format release version number

RDF_DATE= '13-JUL-1994' / Rationalized Data Format release date

PROC_SYS= 'SASS7_2_0' / Proessing system

PROCDATE= '2-JUN-1994 11:20:34' / SASS SEQ proessing start date

REVISION= 2 / Revision number of proessed data

COMMENT

COMMENT Header Group Observation Details

COMMENT

TELESCOP= 'ROSAT ' / mission name

INSTRUME= 'PSPCC ' / instrument name

OBS_MODE= 'POINTING' / obs mode: POINTING,SLEW, OR SCAN

FILTER = 'NONE ' / filter id: NONE OR BORON

OBJECT = 'XRT/PSPC PSF AR LAC' / name of objet

OBS_ID = 'CA110590P.N10' / observation ID

OBSERVER= 'MPE, ROSAT-TEAM' / PI name

COMMENT

COMMENT Header Group ROSAT Speifi

COMMENT

ROR_NUM = 110590 / ROR number

SETUPID = 'NOMINAL ' / Instrument setup

COMMENT

COMMENT Header Group HEASARC Position Keywords

COMMENT

RA_NOM = 3.320239E+02 / nominal RA (deg)

DEC_NOM = 4.551389E+01 / nominal DEC (deg)

EQUINOX = 2.000000E+03 / equinox

RADECSYS= 'FK5 ' / WCS for this file

COMMENT

COMMENT Header Group HEASARC Timing Keywords

COMMENT

MJDREFI = 48043 / MJD integer SC lok start

MJDREFF = 8.79745370370074E-01 / MJD fration SC lok start

ZERODATE= '01/06/90' / UT date of SC start (DD/MM/YY)

ZEROTIME= '21:06:50' / UT time of SC start (HH:MM:SS)

DATE-OBS= '20/06/90' / UT date of obs start (DD/MM/YY)

TIME-OBS= '11:24:43.000' / UT time of obs start (HH:MM:SS)

47

DATE_END= '20/06/90' / UT date of obs end (DD/MM/YY)

TIME_END= '13:07:12.000' / UT time of obs end (HH:MM:SS)

SCSEQBEG= 1606667 / SC seq start(se)

SCSEQEND= 1612816 / SC seq end (se)

MJD-OBS = 4.806248E+04 / MJD of seq start

NUM_OBIS= 2 / Number of obs intervals (OBIs)

LIVETIME= 1.884999E+03 / Live time

DTCOR = 9.602644E-01 / Dead time orretion fator

ONTIME = 1.963000E+03 / On time

MPLSX_ID= 5 / Soure number from merged soure list (MPLSX)

EFFAREA = 1.0000E+00 / Effetive area saling fator

COMMENT

COMMENT Header Group OGIP_COMPAT

COMMENT

COMMENT The following keywords are required in order to onform

COMMENT to the Offie of Guest Investigator Programs standard:

COMMENT

AREASCAL= 1.0000E+00 / Area saling fator

BACKFILE= 'NONE ' / No bakground file

BACKSCAL= 1.0000E+00 / Bakground saling fator

CORRFILE= 'NONE ' / No orretion file

CORRSCAL= 1.0000E+00 / Corretion file saling fator

RESPFILE= 'NONE ' / BLDRSP response file name (default)

ANCRFILE= 'NONE ' / BLDRSP anillary response file name (default)

XFLT0001= ' ' / Required keyword

PHAVERSN= '1992A ' / Version # of OGIP file speifiation

COMMENT Note that the error info given here applies to the ounts errors

COMMENT whih are in an entirely different table; so we don't

COMMENT attah them to the data model errors in this file.

POISSERR= T / Poissonian errors appropriate

SYS_ERR = 0.0 / No systemati error

CHANTYPE= 'PI ' / Gain-orreted hannels used

DETCHANS= 256 / Total number of PHA hannels available

COMMENT

COMMENT End required OGIP keywords

COMMENT

COMMENT Header Ungrouped

COMMENT

QUALITY = 0 / Quality of data (0 = good data)

COMMENT

COMMENT This extension ontains the off-axis histogram

COMMENT for the soure given in the header.

HISTORY

HISTORY SASS file used: SPCBF.SEQ

HISTORY

HISTORY Correspondene with SASS variables:

HISTORY

HISTORY OFF_AX_RAD = OFF_SPB

HISTORY FRAC_TIME = OHS_SBP

48

OFF_AX_RAD COL1_LO COL1_HI FRAC_TIME

0 0 2.5 0

5 2.5 2.5 0

10 2.5 2.5 2.17989E-04

15 2.5 2.5 0.73768

20 2.5 2.5 0.2621

25 2.5 2.5 0

30 2.5 2.5 0

35 2.5 2.5 0

40 2.5 2.5 0

45 2.5 2.5 0

50 2.5 2.5 0

55 2.5 1.25 0

57.5 1.25 1.25 0

60 1.25 0 0

8.2 Case Study: Baryenter Corretion Algorithm

We analysed the Baryenter Corretion Algorithm to see how it would be laid out in terms of the data model.

The algorithm uses the following ASC Tables:

� Event List: this ontains rows whih we refer to as photons, and a set of olumns whih inlude at least Pixel

Position and Time. The Pixel Position Column Data Desriptor has Data Desriptor with default name Pixel Position

and omponent names X and Y; it must be of element dimension 2. We will aess it by element type V (Value). It

must also have a Data Coordinate Desriptor whih ontains the Equatorial Position (RA and De). The Time Data

Desriptor may have a Data Coordinate Desriptor giving the absolute Date.

� Orbital Data: This is a stak ontaining the names of spaeraft and pointers to their Ephemeris �les.

� Solar System Ephemeris: This is a stak ontaining the names of planets and pointers to their Ephemeris �les.

� Ephemeris: This is a table with the olumns Time and 3-Vetor-Position. The latter has element dimension 3 and

omponent names X,Y,Z. The ephemeris table has a table attribute Mass, giving the mass of the orbiting body.

The algorithm is:

� Identify the spaeraft in use for this event list: this should be a table attribute of the event list.

� Find the orresponding spaeraft ephemeris from the orbital data stak.

� Open output table with same format as input event list but with extra olumn named BARY TIME of dimension 1 and

type U. Unit is seonds of mission time; oordinate system is opied from input olumn whose default name is TIME.

Add omment to header desribing the fat that BARY TIME is the time of a di�erent event (arrival of a photon at

the baryenter) in the same oordinate system as TIME.

� For eah row in the table, get the Pixel Position. Calulate the Equatorial Position using that Data Desriptor's Data

Coordinate Transform.

� Calulate the 3-vetor diretion of the photon (the soure vetor)from the equatorial position.

� Get time from row of table (represents photon arrival time at spaeraft). (If the ephemerides are in JD rather than

mission time, may need to also use this Data Desriptor's Data Coordinate Transform to get JD from time.) Also get

time unertainty if present.

� Interpolate in spaeraft ephemeris at the given time to return the spaeraft ephemeris position and unertainty (an

element of type U and dimension 3).

� For eah entry (planet) in the solar system ephemeris stak, interpolate in the orresponding ephemeris and return the

mass of the planet and the position (a value element of dimension 3) at the time.

� Calulate the solar system baryenter at the given time by taking the mass weighted mean of the planetary positions.

Result is an element of type V and dimension 3.

49

� Calulate the baryenter to spaeraft vetor and its unertainty. Chek that the units of baryenter and spaeraft

positions are ompatible and apply onversions if neessary.

� Calulate the salar produt of the spaeraft and soure vetors and its unertainty; sale to light travel time to obtain

orretion. Corretion is an element of type U.

� Add this to photon time and ombine unertainty in quadrature. Result is baryenter orreted time (BARY TIME).

� Copy input row to output, adding new olumn of BARY TIME.

� Loop to next photon until omplete.

50

Name Unit Description Data Type Display Format

Element dimension d
Element type t
Array dimension n
Array spec ni, gi

ELEMENTS Coord
Descriptors

N

N

n c

DESCRIPTOR

BLOCK

IMAGE DATA

=1

= Value
= 2

= (512,512)

A(1,1) A(1,2) A(1,3)...

... A(512,512)
Rescaling of pixel values

AXIS GROUP
DESCRIPTOR

(X,Y) scales to
physical coord system

(RA,DEC) scales (X,Y) to
world coord system

COORD DESCRIPTOR
WORLD

F
i
g
u
r
e
1
1
:
D
a
t
a
M
o
d
e
l
7
b
:
D
M

I
m
a
g
e
D
e
s

r
i
p
t
o
r

5
1

