CXC-DM-008

CXC Data Model

AR

Vol. 8

C Programmers’ (Guide

Chandra X-ray Center
October 22, 2001

Contents
Copyright, Disclaimer
Contributors and ‘Change Doc Page’
Preface

1 Introduction

1.1 Overview oL
1.2 FITS and QPOE o .
1.3 Basicconcepts e e e
1.4 Virtual Files. o L o
1.5 Asimpleexample L.
1.6 Online CXC DataModel References

2 Programming Considerations

2.1 Configuration and Sample Code oo
2.2 Structure Objects L
2.3 Memory Management
2.4 Defined Types. e e
2.5 dmDataType e
2.6 dmBlockType e
2.7 dmDescriptorType e
2.8 dmElementType L

3 Interface Parameters

10

15

15

15

16

17

17

17

18

18

19

19

3.1 Kernel Mnemonics 19
3.2 Kernel Options e e e e 20
3.3 Imternals e 20
3.4 Error Handling and Diagnostics oL, 20
3.5 Counting in the DataModel oo 21
3.6 Imitialization Routines L 21
3.7 Multithreading 21
Introduction to the DataModel library routines 22
4.1 Dataset operationso 22
4.1.1 Opening and closing files 22
4.1.2 Navigating withina dataset, 23
4.1.3 Kernel related routines Lo 24
4.1.4 Auxiliary dataset routines L oL 24
4.2 Tables 24
4.2.1 Openingatable 24
4.2.2 Basic table properties L Lo 25
4.2.3 Creating table structure oL 25
4.2.4 Navigating inthetable 26
4.2.5 Cell-based I/O: introduction 26
4.2.6 Column properties e e 27
4.2.7 Cell-based I/O read and write. 28
4.2.8 Cell-based I/O: complicated cases 29
4.2.9 Column-based I/O L 29
4.2.10 Row-based I/O L 29

4.2.11 Preferred Axes e e 30
Coordinate Descriptorso e 31
4.3.1 Coordinates L e e e e 31
4.3.2 Coordvalues 31
4.3.3 Physical and world coordinate systems Lo 32
4.3.4 Coord properties e e 34
Header keys L e 35
4.4.1 Header keys e 35
4.42 Key properties e e 36
443 Comments. e e e e e e 37
Images e 38
4.5.1 Opening an image o e e 38
4.5.2 Basic image properties L e 38
453 Imageaxes e 39
454 TImagedata 40
4.5.5 Image properties e 40
4.5.6 Image pixellists 41
Data Subspace e e 41
4.6.1 Subspace columns e 41
4.6.2 Subspace column propertieso 42
4.6.3 Accessing subspace columnso o oo 43
4.6.4 Subspaceroutines 44

Copyright, Disclaimer

Copyright, Acknowledgement, Disclaimer

The software described in this document is freely distributed under the following copyright:

/***/

/* */
/* Copyright (c) 1999 Smithsonian Astrophysical Observatory x/
/* */
/* Permission to use, copy, modify, distribute, and sell this */
/* software and its documentation for any purpose is hereby x/
/% granted without fee, provided that the above copyright */
/* notice appear in all copies and that both that copyright x/
/* notice and this permission notice appear in supporting docu- */
/* mentation, and that the name of the Smithsonian Astro- */
/* physical Observatory not be used in advertising or publicity x/
/* pertaining to distribution of the software without specific, */
/* written prior permission. The Smithsonian Astrophysical x/
/% Observatory makes no representations about the suitability */
/* of this software for any purpose. It is provided "as is" x/
/* without express or implied warranty. x/
/* THE SMITHSONIAN ASTROPHYSICAL OBSERVATORY DISCLAIMS ALL */
/% WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL x/
/* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO */
/* EVENT SHALL THE SMITHSONIAN ASTROPHYSICAL O0BSERVATORY BE */
/* LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES x/
/% OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA x/
/* OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR */
/* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH */
/* THE USE OR PERFORMANCE OF THIS SOFTWARE. */
/* */

/**/

Published papers making use of CXC software should include the following acknowledgement:

This work has made use of software provided by the Chandra X-ray Center, operated
by a grant the Smithsonian Astrophysical Observatory by the National Aeronautics
and Space Administration.

Contributors

Contributors and ‘Change Doc’ Page

Jonathan McDowell, Michael S. Noble, Kenny Glotfelty, Oliver Oberdorf, Scott Randall
WWW: http://chandra.harvard.edu/

Preface 7

Preface

This Guide describes the SAO/CXC data model software, which allows the user to manip-
ulate data by filtering and binning it. The CXCDM (CXC Data Model) library is used
throughout the CXC software to read and write data files, and filters those data files using a
special ‘virtual file’ syntax which qualifies the input filename. This means that users can use
any of the CXC tools to filter their data on the fly, whenever an input filename is prompted
for. The CXCDM also comes with some basic tools for simple data manipulation. See the
Data Manipulation User’s Guide for a description of the virtual file syntax and use of the
tools. The present document is intended for programmers who want to write their own code
using the CXCDM .

The CXCDM was developed by a team at the Chandra X-ray Center (CXC, formerly
ASC), at the Smithsonian Astrophysical Observatory, Cambridge, Massachusetts, USA. CX-
CDM will be an integrated part of the CXC Data Analysis System, and is being distributed

by the CXC as part of the flight software release in spring 1999 ready for the launch of
Chandra in mid-1999.

1 Introduction

1.1 Overview

The DataModel is an I/O subroutine library which

e Gives access to different file formats
e Provides a high level, common abstraction of those formats

e Allows the application program to transparently access a filtered view of the underlying
file, e.g. selecting rows and columns of tables.

1. Introduction 8

1.2 FITS and QPOE

The DataModel gives you an abstract view of astronomical data files and provides data
I/O transparently to FITS, QPOE and IMH format files. Instead of using format-specific
calls that involve concepts specific to those formats (like the BITPIX variable in FITS files),
we provide a uniform interface which deals in terms of a more abstrat description - the
"Data Model”. The lower layers of the library which deal with specific formats are called
"kernels”. The two file kernels currently supported by the DataModel architecture are the
FITS kernel and the IRAF kernel. The FITS kernel provides I/O to FITS files (including
images, and binary and ASCII tables, but with some limitiations, particularly for ASCII
tables and variable-length array columns in binary tables). Each FITS kernel ‘dataset’ is a
single FITS file. The IRAF kernel handles IMH image files and QPOE table/event list files.
By default it currently treats a whole directory as the ‘dataset’, but individual files can also
be datasets. The use of directories as datasets is now deprecated.

1.3 Basic concepts

The DataModel treats data as a hierarchy of datasets, blocks and descriptors. Loosely,
datasets represent files, blocks represent tables and images (including their header informa-
tion), and descriptors represent individual columns, header keywords, coordinate systems,
and other named objects within a block. For instance, a table column has a descriptor,
since it has a name, but a table row has neither a name nor a descriptor. The unified ‘de-
scriptor’ concept helps us do useful, flexible things like treating header keywords as table
columns whose value is the same in each row. Descriptors have other associated descriptive
information (hence the name), such as units, comments, and data type.

e A dataset is an ordered set of blocks.

e A block consists of header, data, and a data subspace which describes the range
of applicability of the data (specifically, how the data has been filtered).

e Each block consists of a set of columns; each column in the block has the same
non-negative number of rows.

e In each row, the column contains a cell which is an n-dimensional array of elements
(but usually this n-dimensional array is a single element, i.e. n = 0).

e Elements are vectors of values (but usually just one value). For example, an (X,Y)
position pair is a 2-dimensional vector. In the DataModel, we distinguish between
vectors like (X,Y,Z) (different quantities grouped together) and arrays like X[10]
(several values of the same quantity), so that you can in the worst case have a vector

1. Introduction 9

array like (X,Y,Z)[10]. In most cases, though, data is scalar, i.e. neither vectorized
nor arrayed.

e A value can be numeric, string, or one of the other supported data types described
below.

e An image block has one row and one column, containing a single N-dimensional cell of
values.

There are several flavors of descriptor:

key descriptor which corresponds to a DataModel header key. In the DataModel, ker-
nel header keys which describe the structure of the file are not visible through the
DataModel interface. For instance, a FITS TUNITn keyword which describes the unit
for a table column doesn’t count as a DataModel header key - instead, you control
it through altering the properties of that table column. This lets you concentrate on
just the ‘extra’ header keys which contain scientific rather than structural information;
these are the DataModel header keys.

column descriptor which corresponds to a table column. Since images are considered to
be a trivial table, there is also a single ‘image data descriptor’ for each image block.
This is currently a separate type of descriptor, but the distinction will soon be phased
out. Some columns are ‘vector columns’ with multiple component columns, like 2-
dimensional positions.

subspace descriptor which corresponds to filtering information on the block. Each quan-
tity that the block has been filtered on has a corresponding descriptor. Sometimes
there is an associated column descriptor too - maybe TIME is a column and you’ve
also filtered on TIME - and sometimes not: maybe you filtered on PHA but then got
rid of that column, so only the filter information is left.

coord descriptor which represents a ‘pseudo-column’ defined as a function of another col-
umn. Currently we use these to implement support for WCS (World Coordinate Sys-
tem) information. A special case, the physical coordinates along the axes of an image,
are called axis group descriptors.

1.4 Virtual Files

When you open a DataModel block to read it, you pass the subroutine (e.g. dmTableOpen)
a string called a ‘virtual file specification’ or ‘vspec’, rather than simply a file and table
name. The block descriptor that is returned refers to that virtual file, and all I/O is done in
terms of the filtered view described by it. For instance,

1. Introduction 10
table = dmTableOpen("bas.fits[stdevt] [pha=20:30]");

opens a virtual file which consists of only those rows in table ‘stdevt’ of file ‘bas.fits’ which
have values of the PHA column lying between 20 and 30. Unlike some virtual file implemen-
tations, DataModel filtering does not read in the entire filtered file at open time, although
some buffering is done as you read through the file. This means there’s no limitation on the
size of file you can read, but it’s inefficient to randomly access rows of a filtered file (e.g.
going to row number 42 may require the file to be filtered again).

In contrast, DataModel binning, e.g.
image = dmImageOpen("bas.fits[stdevt] [bin x=32,y=32]");

does create the entire binned image in memory the first time you try and read from the data
section of the virtual file. Binning may fail if insufficient memory is available. (We plan to
add code to get around this by rebinning on subsections, but that will be an ‘after launch’
addition). However, you can access the header and structure of an arbitrarily large binned
image without triggering the binning - it’s only when you read image pixels that binning
occurs.

1.5 A simple example

Here is a simple example of code which reads two tables and writes a third. In the GTI
table, we open column descriptors by explicit column numbers since we know that different
implementations of GTI tables use a variety of names for the columns but the data is always
in columns 1 and 2. We use the GetScalars command to read each column at one gulp, since
we know the GTI is probably small and we won’t take much of a buffering hit. In the event
table, we open column descriptors by name, allowing the possibility that the order of the
columns may be moved around. Since the number of rows may be large, we read the data
row by row to avoid FITSIO buffering problems.

The header key read returns a descriptor, which we can use to find out the key’s unit or other
properties, but most often we use it just to test that it is non-null, i.e. that the keyword is
present.

Error checking is omitted from the code below for brevity, as are comments since the code
is described above in the text.

#include "ascdm.h"

10

1. Introduction

#include <stdlib.h>
#include <stdio.h>
#tdefine MAXPHA 256

int main(int nargs, charx args[])

{

dmDataset* input_ds;

dmDataset* output_ds;

dmBlock* gti_table;

dmBlock* event_table;

dmBlock* out_table;

dmDescriptor *start_col, *stop_col, *pha_col;
dmDescriptor *status_col;

dmDescriptor *channel, *counts, *rate;
double* start;

doublex* stop;

double livetime, tzero;

long spectrum[MAXPHA+1];

long pha, itzero, i, ngti, n, row;
short status;

for(i = 0; i < MAXPHA; i++)
spectrum[i] = 0;

input_ds = dmDatasetOpen("bas.fits");

gti_table = dmBlockOpen(input_ds, "STDGTI");
start_col = dmTableOpenColumnNo(gti_table,1);
stop_col = dmTableOpenColumnNo(gti_table,2);
ngti = dmTableGetNoRows (gti_table);

start = (double*)malloc(ngti*sizeof (double));
stop = (doublex)malloc(ngti*sizeof(double));

dmGetScalars_d(start_col, start, 1, ngti);
dmGetScalars_d(stop_col, stop, 1, ngti);
dmBlockClose(gti_table);

livetime = 0.0; for (i= 0;i<ngti;i++) { livetime += stop[il]
event_table=dmBlockOpen(input_ds, "STDEVT");

11

11

- start[i]; }

1. Introduction 12

/* Look for any of various MJDREF keywords */

if(dmKeyRead_1(event_table, "MJDREFI", &itzero))

{
(void)dmKeyRead_d(event_table, "MJDREFF", &tzero);
tzero += itzero;

}

else if(!dmKeyRead_d(event_table, "MJDREF", &tzero))
if (dmKeyRead_1(event_table, "XS-MJDRD", &itzero))

{
(void)dmKeyRead_d(event_table, "XS-MJDRF", &tzero);
tzero += itzero;
}
else
{
tzero = 0.0;
printf("No MJDREF keyword found\n");
}

n = dmTableGetNoRows(event_table);

pha_col = dmTableOpenColumn(event_table, "PHA");
status_col=dmTableOpenColumn(event_table, "STATUS");
for (row = 0; row < n; row++)

{
pha = dmGetScalar_1(pha_col);
status = dmGetScalar_s(status_col);
if (status == 0) spectrum[pha]++;
dmTableNextRow(event_table) ;

}

dmBlockClose(event_table) ;
dmDatasetClose(input_ds);
free(start);
free(stop);

output_ds = dmDatasetCreate("spectrum.fits");

out_table = dmDatasetCreateTable(output_ds, "TABLE");

channel = dmColumnCreate(out_table,"CHANNEL",dmLONG,O,"channel","Pulse height channel");
counts dmColumnCreate (out_table,"COUNTS",dmLONG,0,"count","Spectrum counts");

rate dmColumnCreate (out_table,"RATE",dmDOUBLE, 0, "count/s","Count rate");
dmKeyWrite_d(out_table, "EXPOSURE", livetime, "s", "Livetime");

dmKeyWrite_1l(out_table, "CHANMIN", O, "channel", "Min PHA channel");
dmKeyWrite_1l(out_table, "CHANMAX", MAXPHA, "channel", "Max PHA channel");

12

1. Introduction 13

dmKeyWrite_c(out_table, "CHANTYPE", "PHA", " ", "PH binning type");

for (pha = 0; pha <= MAXPHA; pha++)

{
dmSetScalar_1(channel, pha);
dmSetScalar_l(counts, spectrum[pha]l);
dmSetScalar_d(rate, spectrum[phal]/livetime);
dmTablePutRow(out_table,NULL);

}

dmBlockClose(out_table);
dmDatasetClose(output_ds);
return O;

¥

The same program can be written using explicit row data buffers and one-block-at-a-time
dataset handling (some details omitted where the same as the previous version). The one-
block-at-a-time dmTableCreate/dmImageCreate and dmTableOpen/dmImageOpen routines
are a convenience for the special case of a dataset with one block in it, which is very common.
It minimizes the number of handles floating around in the program. The row buffers have
the advantage of simplicity, but the huge disadvantage that the code is no longer robust to
changes in data type and column order in the input file. Therefore, it should be used with
caution in production code intended for wide use.

dmBlock* gti_table;

dmBlock* event_table;

dmBlock* out_table;

dmDescriptor *channel, *counts, *rate;
double livetime;

long spectrum[MAXPHA+1];

long pha;

double tzero;

struct { double start; double stop; } gti;
struct { long pha; short status; } event;
struct { long channel; long counts; double rate; } row;

gti_table = dmTableOpen("bas.fits[STDGTI] [cols START,STOP]");
livetime = 0.0;

while(dmTableGetRow(gti_table,>i) != dmNOMOREROWS)
livetime += gti.stop - gti.start;

13

1. Introduction 14

dmTableClose(gti_table);
event_table=dmTableOpen("bas.fits[STDEVT] [columns PHA,STATUS]");

dmKeyRead_d(event_table, "MJDREF",&tzero) ;
while (dmTableGetRow(event_table, &event) !'= dmNOMOREROWS)
if (event.status == 0) spectrum[event.phal]++;

dmTableClose(event_table) ;

out_table = dmTableCreate("spectrum.fits[SPECTRUM]");

channel = dmColumnCreate(out_table,"CHANNEL",dmLONG,O,"channel","Pulse height channel");
counts dmColumnCreate (out_table,"COUNTS",dmLONG,0,"count","Spectrum counts");

rate dmColumnCreate (out_table,"RATE" ,dmDOUBLE, O, "count/s","Count rate");

dmKeyWrite_d(out_table, "EXPOSURE",livetime, "s", "Livetime");
dmKeyWrite_1l(out_table, "CHANMIN", O, "channel", "Min PHA channel");
dmKeyWrite_1(out_table, "CHANMAX", MAXPHA, "channel", "Max PHA channel");
dmKeyWrite_c(out_table, "CHANTYPE","PHA", " ","PH binning type");

for (pha = 0; pha < MAXPHA; pha++)

{
row.channel= pha;
row.counts = spectrum[phal;
row.rate = spectrum[phal]/livetime;
dmTablePutRow(out_table, &row);
}

dmTableClose(out_table);

Better yet, you can also rewrite the first part of the code as follows:

dmBlock* event_table;

double livetime;

double* start;

doublex* stop;

long spectrum[MAXPHA+1];

long ngti;

struct { long pha; short status; } event;

14

2. Programming Considerations 15

event_table=dmTableOpen("bas.fits[STDEVT] [cols PHA,STATUS]");

dmKeyRead_d(event_table, "MJDREF", &tzero);

dmSubspaceColGet_d(dmSubspaceColOpen(event_table, "TIME"),
&start, &stop, &ngti);

livetime = 0.0;

for (i= 0;i<ngti;i++) { livetime += stop[i] - start([i]; }

while(dmTableGetRow(event_table, &event) '= dmNOMOREROWS)
if (event.status == 0) spectrum[event.pha]++;

dmTableClose(event_table);

In this version, we don’t ever see the GTI table explicitly. At the scientific level, GTI is just
the filter on the time attribute, you don’t care that in a FITS file it’s stored in a separate
extension. In fact, in a QPOE file the GTIs are not stored in a separate table. So it’s
important to provide this level of abstraction if you want the program to work on either
QPOE or FITS files.

1.6 Online CXC DataModel References

This document is kept online at http://cfa-www.harvard.edu/ jem/asc/ascdm. At the mo-
ment the DataModel is available only for internal Chandra X-ray Center use. The source
will be made available via FTP and WWW at the time of a general release. Email the
DataModel alias (ascdm@cfa.harvard.edu) or or Jonathan McDowell (jem@cfa.harvard.edu)
for further information, or to obtain the source code prior to the general release.

2 Programming Considerations

2.1 Configuration and Sample Code

A configure script lets you include or exclude specific kernels and configure the library for a
particular platform.

The doc directory in the DataModel distribution contains additional notes on installation,
configuration, and use of the DataModel, as well as HT'TP references to other astronomical
software upon which the DataModel is layered.

15

2. Programming Considerations 16

The examples directory contains several programs and makefiles that can be used both as a
test of the installation/configuration and as sample code.

In brief, the primary requirements for building an CXC DataModel program are:

- ensure #include "ascdm.h" appears in your source

- ensure your makefiles reference the Makevars.ascdm present in
the root of the DataModel distribution tree

- ensure your compilation and link rules reference the appropriate
DataModel macros specified within Makevars.ascdm.

DataModel programs link to the following libraries:

e libascdm.a, the main DataModel library

e libwcs.a, Doug Mink’s coordinate transformation library

e libregion.a, the DataModel Region library for 2D region filtering.

e libcfitsio.a, Bill Pence’s CFITSIO library (if the FITS kernel is enabled)

e libirafm.a, the CXC repackaging of the IRAF libraries (if the IRAF kernel is enabled)

e On some systems, libl.a and liby.a (the LEX and YACC libraries, or their FLEX and
BISON equivalents) may need to be explicitly linked, as well as the libm.a C math
library.

2.2 Structure Objects

In support of the logical abstractions provided by the CXC DataModel, three object types
are defined. Instances of these structures should be created and modified only through use of
the access routines specified in this document. Direct access of the data structure internals
may jeopardize the integrity of your application and data, and hence should be avoided.

e dmDataset™: pointer to a DataModel dataset
e dmBlock™: pointer to a DataModel datablock (ie, table or image)

e dmDescriptor*: pointer to a DataModel data descriptor

16

2. Programming Considerations 17

2.3 Memory Management

To a large extent the CXC DataModel does not require the user to worry about details
of memory management. For example, it is not necessary to free memory associated with
individual dmDescriptor, dmBlock, or dmDataset pointers. Memory allocated to blocks and
the descriptors they may contain will be freed when block is closed via an appropriate routine
call. Similarly, memory allocated to dmDataset pointers will be freed when the dataset is
properly closed. To summarize, you should remember to close blocks and datasets, but you
never need to explicitly close a descriptor.

Another example concerns routines that return character strings. Rather than have them
return char® arrays, these routines instead mostly write into a pre-allocated char® parameter,
up to a specified maximum length parameter value (e.g., dmBlockGetName).

This maximum length does not include the C null termination, but the DM will enforce null
termination of returned strings. Thus, in the call

dmGetScalar_c(dd, value, maxlen)

the variable ”value” must be declared char[maxlen+1], and the memory location
value[maxlen| may be set to zero.

Despite these attempts, there are still instances when the DM user will need to explicitly
deal with memory management. For example, array memory allocated by routines that
return array pointers (e.g., dmTableOpenColumnList, dmBlockGetKeyList, or dmGetAr-
rayDimensions) will need to be explicitly freed. In these cases, though, ONLY the array
memory need be freed, not the individual array elements. Further details can be found in
the accompanying function descriptions and code samples.

2.4 Defined Types

The DataModel defined types have integral values with symbolic names as listed.

2.5 dmDataType

Each dmDataType corresponds to either a C built-in type or DataModel typedef.

17

2. Programming Considerations

18

dmDataType String Meaning Data/Class Type
dmSHORT S 2 byte integer dmshort, short
dmLONG L 4 byte integer dmlong, long

dmFLOAT F 4 byte IEEE real dmreal, float
dmDOUBLE D 8 byte IEEE real dmdouble, double
dmTEXT C String dmString
dmBLOCKREF BR String, reference to block typedef blockref dmString
dmBOOL Q Logical typedef dmlogical int
dmBYTE UB 1 byte unsigned dmbyte, unsigned char
dmUSHORT US 2 byte unsigned dmushort, unsigned short
dmULONG Ul 4 byte unsigned dmulong, unsigned long
dmBIT BIT bit string bit array

The dmSHORT class is a machine-dependent #define to a 2 byte integer type; on many
machines short will be equivalent. Same goes for other types. The logical and blockref types
are typdef’d not #defined to make sure they are compiler-distinct from integer and string.
Other types may be added later. The blockref type is intended for use as a special ‘URL /file
reference’ type, but we haven’t fully implemented it yet.

2.6 dmBlockType

The dmBlockType describes whether a block is a table, image, or something else.

dmBlockType String
dmTABLE TABLE
dmIMAGE IMAGE

dmUNKNOWNBLOCK UNKNOWN

2.7 dmDescriptorType

dmDescriptorType String

dmCOLUMN for columnar table data access
dmKEY for header keyword access
dmIMAGEDATA for access to image data (deprecated)
dmCOORD for coordinate transform descriptors
dmSUBSPACE for data subspace descriptors

dmUNKNOWNDESCRIPTOR for unknown descriptors

18

3. Interface Parameters 19

Special cases: a special type of dmCOORD is an image axis; a special type of dmCOLUMN
is a scalar column descriptor which is really one component of a vector column.

2.8 dmElementType

The DataModel considers tabular column and image data in terms of ”cells,” the intersec-
tion of a row and column, each of which contain one or more ”elements,” each of which in
turn represent data in terms of the fundamental dmDataTypes. Cells can either be scalar,
1-dimensional arrays, or N-dimensional arrays, with constituent element types of:

dmElementType String Meaning

dmVALUE Vv Value (value)
dmRANGE R Range (min,max)
dmINTERVAL 1 Interval (value,min,max)

Note that elements can be multidimensional. For example, consider a cell containing ele-
ments representing points in Cartesian 3D space. Each (x,y,z) triple would be a dmValue
element of dimensionality 3. Note that since cell dimensionality is independent of element
dimensionality, it would still be possible to define the cell in question here as a scalar cell -
meaning each cell would contain only 1 (x,y,z) triple.

3 Interface Parameters

3.1 Kernel Mnemonics

The DM kernel mnemonics provide an encapsulated way of referencing the the ETOOLS
kernel currently being used for I/O on a given dataset. Note that multiple datasets may be
opened during the execution lifetime of a DM application, with a potentially distinct kernel
used for I/O on each.

Kernel Mnemonic Value Description
dmFITSKERNEL "FITS” interface to CFITSIO
dmIRAFKERNEL 7"IRAF” interface to native IRAF

19

3. Interface Parameters 20

3.2 Kernel Options

The kernel options, invoked with dmKernelSetOption, allow you to fine-tune the behaviour
of the kernels outside of the DataModel paradigm. For instance, the DM doesn’t know the
difference between FITS BINTABLE and FITS ASCII Table representations, so we have to
control them by the ‘back door’. The TABLE=STSDAS and COL=VARARRAY options
are not yet supported.

Kernel Option Effect

"TABLE=BINTABLE’ Write tables in BINTABLE format if kernel is FITS
"TABLE=ASCIT’ Write tables in ASCII table format if kernel is FITS
'"COL=VARARRAY’ Next created array col is a variable array, if kernel is FITS
"TABLE=QPEVT’ Write tables in QPOE event format if kernel is IRAF

"TABLE=STSDAS’ Write tables in STSDAS format if kernel is IRAF

3.3 Internals

The DM internal parameters are used by the dmSetInternals routine.

Internal Parameter Value

dmTABLEBUFFERSIZE ”buffersize”
not set the buffer size smaller than the largest number of rows
that your program will read in any single table I/O call. Setting this
parameter to a low number can reduce the amount of memory your progran
consumes, or conversely, setting it higher may increase efficiency by
ensuring that large tables are handled by larger buffers.

3.4 Error Handling and Diagnostics

Most of the CXC DataModel routines indicate completion status either by returning an ”int”
status code or by returning unusual values (e.g., NULL pointers or negative row numbers).
The #define symbol "dmErrCode”, equivalent to ”int”, is also provided for use with the
return status codes. Regardless of whether or not a DataModel API function provides
explicit error state indication, the call completion status can be determined by using the
dmGetError and dmGetErrorMessage routines.

The dmFAILURE status code indicates some error condition exists, while dmSUCCESS
indicates the call completed successfully. Other status codes and return values are listed
as appropriate with the associated APi functions. The numeric values may change in the

20

3. Interface Parameters 21

future, and we are considering various schemes such as using negative values to indicate a
non-fatal error or warning.

Use dmGetVersion to find the current DataModel release version. This may be needed if
you send email to the CXC about possible bugs.

In later releases, we hope to provide dmDatasetPrintKernel and dmBlockPrintKernel
to inspect the contents of the file at the kernel level, bypassing the layer of interpretation
imposed by the DataModel. Use dmBlockGetNoKernelKeys and dmBlockGetKer-
nelKey to inspect header entries at the kernel level. Until these routines exist, you should
use the appropriate native tools (FTOOLS fdump, PROS qplist) to get a kernel-level view
of the files.

3.5 Counting in the DataModel

The CXC DataModel uses a ones-based counting system consistently. That is, the smallest
block number, key number, image pixel coordinate, column number, or row number will
ALWAYS be 1. In particular, note that FTOOLS counts FITS HDUs from zero, while we
count from 1.

3.6 Initialization Routines

It is not necessary within DataModel programs to explicitly call the IRAF initialization
routine(s) when linking against the IRAF/QPOE kernel, as the necessary IRAF initializa-
tion(s) will be performed internally by the DataModel. In fact, since one of the goals of the
DataModel is to free the user from file-format specifics, the use of any explicit file-format
specific functionality is discouraged.

Users wishing to explicitly perform initialization at some well-defined point within their
application may use the dmlnit routine.

3.7 Multithreading

At the time of this writing the CXC DataModel is NOT thread-safe. The decision to im-
plement the DataModel in this manner was primarily due to the fact that the DataModel
library is layered on other astronomical software libraries, most of which are themselves NOT
thread-safe.

21

4. Introduction to the DataModel library routines 22
4 Introduction to the DataModel library routines

Although there are a large number of routines in the library, they can be grouped fairly
simply. Many routines are used in multiple contexts; for instance, the same routine may
be used to read data from a table or an image. This section organizes the routines by
usage, briefly describing the routines to use in each context - for instance, table routines
are grouped together in one subsection, and the same routine may be referred to in several
subsections. However, the details of the routine are not given here, but in the final section
of the document where all the routines are described in alphabetical order.

4.1 Dataset operations

We first describe operations at the dataset level. Recall that each dataset contains a series
of table blocks and/or image blocks.

4.1.1 Opening and closing files

To open an existing dataset, use either the dmDatasetOpen routine or (if you are only
interested in one table or image in the dataset) the dmTableOpen/dmImageOpen routines.
The former returns a pointer of type dmDataset™®, and you can then use that pointer to open
various blocks (tables or images) in the dataset using dmBlockOpen. The latter directly
returns a pointer of type dmBlock*. Each of the Open routines has a corresponding Close
routine and a corresponding Create routine for opening a new object to write to. We also
provide a parallel set of OpenUpdate routines to let you access files read-write.

Table 1: Open/close routines

dmDatasetOpen Open dataset by name, return dmDataset™
dmDatasetOpenUpdate Open dataset by name, read-write, return dmDataset™
dmDatasetCreate Same for creation

dmDatasetClose Close a dataset.

dmBlockOpen Open block (table/image) in dataset, return dmBlock™
dmBlockCreate Same for creation, don’t use for images

dmDatasetCreateTable Block create for table
dmDatasetCreateImage Block create for image, specify size
dmBlockClose Close block opened by dmBlockOpen/Create

dmTableOpen Open table and dataset at same time, return dmBlock*

22

4. Introduction to the DataModel library routines 23

dmTableOpenUpdate Open table and dataset at same time, read-write, return dmBlock*
dmTableCreate Same for creation

dmTableClose Close dataset opened by dmDatasetTableOpen/Create
dmImageOpen Open image and dataset at same time, return dmBlock*
dmImageOpenUpdate Open image and dataset at same time, read-write, return dmBlock*
dmImageCreate Same for creation

dmImageClose Close image

If you open a dataset using the dmTable or dmImage routines, you only have a block pointer.
If you then need the dataset pointer you can get it with the dmBlockGetDataset routine.

Another routine to create blocks is the dmBlockCreateCopy routine, which copies the
structure of an existing block without its data.

4.1.2 Navigating within a dataset

Most of the time we work with a single block within the dataset. If you have an open dataset,
and want to change to a different block within the dataset, how do you get there? There are
several ways. You may access the blocks sequentially, or by number, or by name.

To access the blocks sequentially, use the dmDatasetNextBlock routine. This routine will
open the next block, (the first time, it will open the first block in the dataset), and repeated
calls will go through all the blocks until the end of the dataset, when it will return null.
The dmDatasetGetCurrentBlockNo inquiry routine returns the number of the most
recent block to have been opened. The dmDataset AdvanceBlocks routine moves ahead
or back by a specified number of blocks, so dmDatasetNextBlock is equivalent to calling
dmDatasetAdvanceBlocks with an argument of 1.

To access the blocks by number, use dmDatasetMoveToBlock. dmDatasetGetBlock-
Name lets you check the name of a numbered block before opening it. The name of the
dataset itself is available via dmDataset GetName.

The dmDatasetGetNoBlocks inquiry routine returns the total number of blocks in the
file.

The dmDatasetGetBlockType routine is used to find out whether the block you are about
to open is a TABLE or an IMAGE. If you have opened the block (i.e. you have a dmBlock*
pointer) you can use the dmBlockGetType or dmBlockGetTypeStr routines to find out
what kind of block you have.

23

4. Introduction to the DataModel library routines 24

4.1.3 Kernel related routines

The following routines allow control over which kernel is used to make new files. In normal
use we want the existence of different kernels to be invisible to the programmer, so we
separate these calls out instead of making the kernel id an argument to CreateDataset as in
the EDS layer.

Use dmKernelSetCreate to specify the kernel to be used when creating new datasets from
scratch. Use dmKernelSetCopy to specify the kernel to be used when making a copy from
an existing dataset (usually its kernel is copied t00).

Use dmKernelGetCreate and dmKernelGetCopy to inspect the current settings.
dmKernelGetList tells you what kernels are available at run-time.

dmDatasetGetKernel is used to find out which ETOOLS kernel (i.e. which underlying
disk format) is being used for a particular dataset.

4.1.4 Auxiliary dataset routines
There are some auxiliary routines which are used less often to manipulate datasets.

o dmFileExists is used to test existence of a file.

e dmDataset Access is used to test whether a dataset exists, prior to opening it. It
actually opens the dataset, and is more general than dmFileExists since it handles the
case where a dataset consists of multiple files, but will fail if the file is corrupted.

e dmDatasetDestroy deletes a dataset on disk by name.

e dmDatasetDelete deletes a dataset on disk which is already open; often it’s more
robust to use dmDatasetDestroy instead.

4.2 Tables
4.2.1 Opening a table
You can open an existing table in the following ways:

e Open the next block in a dataset with dmDatasetNextBlock.

24

4. Introduction to the DataModel library routines 25

e Open a numbered block in a dataset with dmDatasetMoveToBlock.

Open a block by name with dmBlockOpen.

Open a block and a dataset at the same time using dmTableOpen.

Open a table for row-based I/O using dmTableOpenSelect (see Row Based I/O
below).

In each of these cases except for dmTableOpen you must check that it is a table and not an
image, using dmDatasetGetBlockType or dmBlockGetType, and call dmBlockClose
when you are done with the block. For dmTableOpen you are guaranteed that it is a table,
and you must call dmTableClose when you are done, which releases both the block and
the parent dataset at the same time.

You can delete the table entirely by using the dmBlockDelete call.

You can create a new table and dataset using dmTableCreate. To create a dataset
with multiple tables and/or images, use dmDatasetCreate to make the dataset and dm-
DatasetCreateTable,dmDatasetCreateImage to create new tables and/or images. For
fine control, use dmKernelSetOption first, to control details of the disk format used (e.g.
FITS ASCII tables versus the default BINTABLE).

4.2.2 Basic table properties

dmBlockGetName returns the name of the table.

dmBlockGetDataset returns a pointer to the dataset of which the table is a member.

dmBlockGetNo returns the number of the block in the dataset.

dmTableGetNoCols returns the number of columns in the table.

4.2.3 Creating table structure

The dmColumnCreate call creates a scalar column with a specified data type and name.
Repeated calls may be used to create all the columns for a new table. After you start writing
data to the table, you can’t add any more columuns.

25

4. Introduction to the DataModel library routines 26

To make an array column (a 1-dimensional array of elements in each table cell), use the
dmColumnCreateArray call.

You can also store an entire n-dimensional array in each table cell, using a column created
with the dmColumnCreateNDArray routine.

The data model introduces the concept of vector columns, in which several columns are
grouped together each with their own name but also with a common name. To create such
a vector column, use the dmColumnCreateVector call.

Another kind of grouped column imposes a particular meaning on the grouping, using the
concept of compound element types (also known as Intervals). This allows us to store ranges
of values rather than point values. For instance, the Good Time Intervals (START,STOP)
are more elegantly handled as a RANGE element for the TIME variable. Columns of this
kind are created with the dmColumnCreateElement routine (not yet supported).

Combining the high level constructs to produce arrays of vectored compound element types
may be done using the (not yet supported) dmColumnCreateGeneric routine; all the
other column create routines are special cases of this. You can define a set of columns at
once with dmTableCreateColumns (scalar columns only) or dmTableCreateGeneric-
Columns (generic columns).

4.2.4 Navigating in the table

To start with, you are always at the first row of the table. Repeated read/write operations
will not change the row. To move to another row, use dmTableNextRow or dmTable-
SetRow (but to write a row, you must use dmTablePutRow, as described below). To
find out which row you are at, use dmTableGetRowNo. The routine dmTableGet-
NoRows tells you how many rows are in the table. However, note that in a filtered table,
dmTableGetNoRows has to filter the entire table to figure this out, so if you can avoid
it, do.

To read or write data to the table, you can use cell-based I/O which operates on one column
of one row at a time, column-based I/O which reads/writes multiple rows of a single column,
or row-based I/O which operates on a whole row at once using a C structure.

4.2.5 Cell-based I/O: introduction

To use cell-based I/O you must first obtain descriptors for each column you wish to ac-
cess, using dmTableOpenColumn or dmTableOpenColumnNo. You can get the entire

26

4. Introduction to the DataModel library routines 27

list of columns using dmTableOpenColumnList. Then you can navigate the rows using
dmTableNextRow or dmTableSetRow, and use the GetScalar or SetScalar calls and
their relatives to read or write the data.

4.2.6 Column properties

To get or alter the properties of a column, use the generic descriptor dmGet/dmSet calls:

e dmGetName, dmSetName - get/set name of column

e dmGetUnit, dmSetUnit - get/set unit of column

e dmGetDataType - get data type of column (cannot be changed)

e dmGetDesc, dmSetDesc - get/set descriptive comment for column

e dmDescriptorGetLength - get length of variable (bytes for string, bits for bitmask,
0 otherwise).

e dmGetArrayDim - get array dimensionality for column (cannot be changed)
e dmGetElementDim - get vector dimension for column (cannot be changed)
e dmGetElementType - get element type of column (cannot be changed)

e dmGetDisp, dmSetDisp - get display format hint for column

¢ dmColumnGetNo - get number of column in table

e dmDescriptorGetRange, dmDescriptorSetRange - get/set legal range of values
for column.

e dmDescriptorGetBin,dmDescriptorSetBin - get/set default binning factor for
column

e dmDescriptorGetNull, dmDescriptorSetNull - get/set null value for column

If the column has nonzero array dimensionality, the dmGet ArrayDimensions and dmGe-
tArraySize routines may be used to find the shape of the array and the total number of
array elements per cell.

If the column is a vector column, the dmGetCptName, dmSetCptName routines can
be used to find or alter the name of each vector component and dmGetElementDim can
be used to find the number of components. For example, one might have a descriptor whose

27

4. Introduction to the DataModel library routines 28

name is DETPOS, with 2 components DETX and DETY representing different axes. This
is in contrast to an array descriptor which might be say DETX(2), with 2 values from the
same axis. One may even have vectored array descriptors but this is not encouraged. The
routine dmGetCpt returns a scalar column descriptor corresponding to a single component
of a vector column.

Each descriptor also has an element type and, possibly, an interval type. The element
types supported at release R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. The
dmRANGE and dmINTERVAL element types are understood to describe closed intervals.
Descriptors also have an Interval Type which allows you to specify open or semi-open inter-
vals, but this will not be implemented (dmGetIntervalType) until at least R3.

To find out which block your descriptor belongs to, use dmDescriptorGetBlock.

To check that your descriptor really is a column and not a key, you can use the dmDescrip-
torGetType routine.

4.2.7 Cell-based I/O read and write

To read/write a scalar cell value from/to the current row, use the column descriptor and the
dmGetScalar/dmSetScalar call.

Like FITSIO, our default approach to getting data in and out of tables is cell-based I/0O,
where we work on one row and column at a time. Thus, the dmTableOpenColumn routine
returns a dmDescriptor* for the column:

dmDescriptor* pha_col = dmTableOpenColumn(table, "PHA");

Reading from this column gets the value from the current row, which initially is the first row
of the table:

pha = dmGetScalar_1(pha_col);

This dmGetScalar routine gets a single value from a scalar type column (the usual sort).
dmGetScalar has various versions subscripted with the data type of the quantity to be
returned; thus dmGetScalar1 returns a value that can be stored as a 4 byte integer. To get
the value for the next row, we must advance the current row:

dmTableNextRow(table);

28

4. Introduction to the DataModel library routines 29

4.2.8 Cell-based I/0: complicated cases

As well as scalar columns, our data can be vector columns, 1-D array columns, N-D array
columns, and vector array columns. The dmGetScalar and dmPutScalar routines each have
cousins to handle these more complicated types of data. For instance, the dmGetArray
family returns a 1-D array of values for an array column.

To handle array and vector columns, use dmGetArray/dmSetArray, dmGetVec-
tor/dmSetVector.

For array columns, to read or write a rectangular sub-array, use dmImageDataGetSub-
Array, dmImageDataSetSubArray. To read or write a single pixel, use dmImage-
DataGetPixel, dmImageDataSetPixel.

4.2.9 Column-based I/O

There is another family of routines, dmGetScalars/dmSetScalars, which reads/writes
many rows at once. It may be used for column-based I/O, which is efficient if the table
is small or if the whole table has been read into memory. However, full column-based I/O
is not efficient when working on a large FITS file which CFITSIO has buffered to be only
partly in memory, since the whole table must be reread each time you read in a column. In
this case, you may use dmGetScalars with an intermediate number of rows, and read a batch
of records at a time.

A companion set of routines, dmGetVectors/dmSetVectors, supports vector columns.

4.2.10 Row-based I/0O

The most convenient way to access data in a table when you know what data you want is
to use the row-struct I/O method. In this method, you define a C struct containing the
information you are interested in for each row of the table. For example, suppose that you
know the table contains the columns PHA, STATUS and TIME of types long, short and

double respectively. Then define the struct:
struct { long pha; short status; double time } myrow;

If this structure corresponds exactly to the table structure, you can directly use the
dmTableGetRow routines to fill myrow with the data and use e.g. myrow.status as a vari-
able. If the table might have extra rows or have the rows in a different order, you have to

29

4. Introduction to the DataModel library routines 30

tell the dm library explicity what your myrow struct contains. To do this, use the ”[cols
pha status,time]” selection operator of the virtual file syntax.

Note: for string columns, include the extra byte for the terminating null of a C string. For
example

struct { long pha; char label[STRSIZE+1]; dmBool flag; double values[7] } myrow;

See the program examples/dmtest.c in the datamodel source tree for code which uses such
a row.

The dmTableGetRow routine returns the data for the current row in the row-structure.
The dmTablePutRow routine writes the row-structure to the internal row buffers and
hence to the table. Both of these routines advance the row pointer, so you do NOT need to
call dmTableNextRow when using these routines.

The advantages of row-based I/O are balanced by the disadvantage of a lack of type checking
on the data. Also, if you don’t know what data is in the table in advance (generic table
browsing or calculation tools), things get a bit trickier. The dmTableAllocRow routine,
and the dmTableGetColOffset and dmTableGetColPtr routines, provide further row-
based I/O functionality to support run-time definition of the row-based I/O structure.

4.2.11 Preferred Axes

Typically a table may contain a small number of crucial columns and a larger number of
columns with ‘extra’ information. The user will often regard the table as being either a
tabulation of one dependent variable Y against independent variables X1, X2, .. XN (‘his-
togram interpretation’), in other words a function Y(X1,X2,...XN); in this case usually the
values of (X1,..XN) do not repeat. Alternatively, the table may be a list of measurements
of independent variables X1, ... XN, which the user may want to correlate one with another
(‘raw table interpretation’) or make a histogram of as N(X1,X2,...XN) (‘event list interpre-
tation’). In ‘first look’ type software, it is useful to be able to figure out which columns of
the table correspond to Y, X1, ..XN and which are ‘extra’ information. The answer to this
for a given table may depend on what the user is interested in, but often there are suitable
defaults. For example, a photon event list might reasonably default to some particular pair
of spatial coordinates (X,Y), and a spectrum histogram might default to counts as a function
of channel: COUNTS(CHANNEL). We provide a convention to record this information in
the header of the table.

The dmBlockSetPref may be used to record the defaults in the table; The dmBlockGet-
Pref routine may then be used to extract the information.

30

4. Introduction to the DataModel library routines 31

4.3 Coordinate Descriptors

4.3.1 Coordinates

Columns in a table or the axes of an image may have coordinate systems attached to them.
The coordinate system can be thought of as a ’'virtual column’ which is defined in terms of
the original column. You get its dmDescriptor® using the dmDescriptorGetCoord routine. In
the simple case of a scalar column with a linear coordinate transform, you get the standard
transformation parameters CRPIX, CRVAL and CDELT using the dmCoordGetLinTrans-
form routine.

To write a coordinate system on a table column or an image axis group, use the dmCoord-
Create routines. To make an image axis group (a ‘physical coordinate system’ in IRAF
terminology), use dmArrayCreateAxisGroup. To get the group number of the axis
group use dmCoordGetAxisGroupNo, and to open an axis group use dmArrayGe-
tAxisGroup.

To find the default coordinate associated with a descriptor (if any), call dmDescriptor-
GetCoord. There may be more than one coordinate associated with a descriptor; dmDe-
scriptorGetNoCoords and dmDescriptorGetCoordNo may be used to get them all.
Conversely, dmCoordGetParent may be used to find the parent descriptor of a coordinate
descriptor.

You can find the transform type using dmCoordGetTransformType, and the transform
values CRPIX, CRVAL, CDELT using dmCoordGetTransform. To get the transform
parameters, use dmCoordGetParams. To change the transform values, use dmCoord-
SetTransform.

4.3.2 Coord values

Suppose you have a scalar dmDOUBLE column called TIME (descriptor time with a co-
ordinate called DATE (descriptor date = dmDescriptorGetCoord(time)). The value
of TIME in the current row might be 14823.3 seconds; the corresponding value of DATE
might be JD 2450423.52 days. To read the value of TIME, you use dmGetScalar_d on
the column data descriptor time. To get the value of DATE for this row, you simply use
dmGetScalar_d on the coordinate descriptor date instead.

However, if you want to find the DATE for some value of TIME which is not in the table, you
must apply the transform explicitly by using dmCoordCalc. The inverse transformation
is also provided, dmCoordInvert.

31

4. Introduction to the DataModel library routines 32

Example:

dmDescriptor* time = dmTableOpenColumn(table, "TIME");
dmDescriptor* date = dmGetDescriptorCoord(time);
dmTableNextRow(table);

double date_value = dmGetScalar_d(date);

double time_value = dmGetScalar_d(time);

double time_value2 = 45.8;

double date_value2;

double date_value3 = 45382.4;

double time_value3;

dmCoordCalc_d(date, &time_value2, &date_value2);
dmCoordInvert_d(date, &date_value3, &time_value3);

4.3.3 Physical and world coordinate systems

Images have both physical and world coordinate systems. (Tables don’t have physical sys-
tems; the column values are considered to be the physical values). The Image LOGICAL
COORDINATES are just the pixel numbers. In the DM, we imagine that for each logical
axis, there is a physical axis which has a linear scaling on the logical axis, and there may
also be a world coordinate axis which is a further transform on the physical axis.

Remember that a 2-D image in the DM can consist either of two axis groups each with
one subaxis, or of a single axis group with two subaxes. For instance, an image with an
RA DEC WCS has a single axis group (NGROUPS = 2) and the group has dimension 2.
The coordinate systems attach to the groups, not the individual axes, so there is a single
physical coord descriptor and a single world coord descriptor in this case, instead of two
separate ones for each axis. That’s because the mapping of X and Y to RA and DEC mixes
X and Y inextricably. You can yse dmArrayGetNoAxisGroups to get the number of axis
groups in an image.

Examples:

Logical Physical World

Quantity Binned pixel Original pixel RA, Dec value

Name (X_BIN,Y_BIN) SKY(X,Y) EQPOS (RA,DEC)
Type Always integral Floating? Floating
Unit - pixel deg

32

4. Introduction to the DataModel library routines 33

Quantity Light curve bin Mission time Julian day

Name TIME_BIN TIME JD
Unit pixel] d
Type integral double double

To read these from a 2D image, we do:

dmDescriptor* imageData;

dmDescriptor* phys([2];

dmDescriptor* world[2];

long ngroups, group, subaxis, axis, dim;
double pcrpix[2], pcrvall2], pcdlt([2];
double wcrpix[2], wcrval[2], wcdlt[2];

ngroups = dmArrayGetNoAxisGroups(imageData);
for (group = 0; group < ngroups; group++) {
phys[group] = dmArrayGetAxisGroup(imageData, group+l); /* l-based group nox*/
world[group] = dmDescriptorGetCoord(phys[group]);
dim = dmGetElementDim(phys[group]);
dmCoordGetTransform_d(phys[group], pcrpix, pcrval, pcdlt, dim);
if (world[group] != NULL) {
dmCoordGetTransform_d(world[i], wcrpix, wcrval, wcdlt, dim);
for (subaxis = 0; subaxis < dim; subaxis++) {
axis = group + subaxis;
logical_to_world_pixel_size[axis] = pcdlt[subaxis] * wcdlt[subaxis];
}
}
}

Note that in the FITS file, the logical-to-world transform is stored in the CR-
PIX/CRVAL/CDELT keywords and the logical-to-physical transform is stored in the
C1RPX/CI1RVL/C1DLT keywords. The data model combines these to return the physical-
to-world transform and the logical-to-physical, so you have to do a bit more work to get the
logical-to-world information.

To make an image with these,

char* pname = "SKY";
char* punit "pixel";

33

4. Introduction to the DataModel library routines 34

char* pcptNames[] = "X", "Y";
long dim = 2;

double pcrpix[2] = { 128.0, 128.0 };
double pcrval[2] = { 256.0, 256.0 };
double pcdelt[2] = { 2.0, 2.0 };
char*x wname = "EQP0OS";

charx wunit = "deg";

char* wcptNames[2] = "RA", "DEC";

char* wtransform "TAN";

double wcrpix[2] { 266.0, 256.0 }; / * Identical with pcrval */
double wcrvall[2] { 271.3, -30.21 }; /* Corresponding RA and Dec */
double wcdelt[2] { -0.0032, 0.0032 };

/* Create linear logical-to-physical transform with initial value the identity transfo
phys[i] = dmArrayCreateAxisGroup(imageData, pname, punit, pcptNames, dim);
/* Adjust value of transform parameters */
dmCoordSetTransform_d(phys[i], pcrpix, pcrval, pcdelt, dim);
/* Create physical-to-world transform */
world[i] = dmCoordCreate_d(phys[i], wname, wunit, wcptNames, dim, wtransform,
wcrpix, wcrval, wcdelt, NULL);

An example of the use of the physical coord system: suppose you want to find the off axis
angle of a target pixel in a rebinned sky image, given that you know the mean aspect. In
the CXC analysis system, the rebinned sky image’s physical coords would be the sky pixel
coords. The definition of sky coords is that the tangent point corresponds to the nominal
pointing direction; in the absence of aspect info that is a good first guess. If you have the
RA PNT, DEC_PNT keywords that will give you the RA and Dec of the mean pointing.
We can use CoordInvert to map these to physical coords, and use CoordCalc to map your
target logical pixel to physical coords.

dmKeyRead_d(imageData, "RA_PNT", &optax_eq[O0]);

dmKeyRead_d(imageData, "DEC_PNT", &optax_eql[1l]);

dmCoordCalc_d(phys[0], target_pixel, target_phys);

dmCoordInvert_d(world[0], optax_eq, optax_phys);

distance_in_phys_pixels = root_add_squares(optax_phys[0]-target_phys[0], optax_phys[1
distance_in_arcsec = distance_in_phys_pixels * wcdlt[1] * 3600.0;

4.3.4 Coord properties

To get or alter the properties of a coord descriptor, use the generic descriptor dmGet/dmSet
calls:

34

4. Introduction to the DataModel library routines 35

e dmGetName, dmSetName - get/set name of coord

e dmGetUnit, dmSetUnit - get/set unit of coord

e dmGetDataType - get data type of coord (cannot be changed)

e dmGetDesc, dmSetDesc - get/set descriptive comment for coord

e dmGetArrayDim - get array dimensionality for coord (always 0)

e dmGetElementDim - get vector dimension for coord (cannot be changed)
e dmGetElementType - get element type of coord (cannot be changed)

e dmGetDisp, dmSetDisp - get display format hint for coord

(Some of these don’t do anything useful yet in the case of coordinates).

If the coord is a vector coord, the dmGetCptName, dmSetCptName routines can be
used to find or alter the name of each vector component and dmGetElementDim can be
used to find the number of components. The coord must have the same element dimension
as its parent descriptor.

To get all the information for a descriptor in a single call, use the dmDescriptorInfo call.

To delete a coord, use the dmDescriptorDelete call.

4.4 Header keys
4.4.1 Header keys

Header keys are treated as table columns with a single row; they are present in both tables
and images. You can create a new header key as follows:

e Use dmKeyCreate to create a descriptor for the key, and then use dmSetScalar to
set, its value.

e Use dmKeyWrite to create the descriptor and write the value, unit and description
at the same time. This is usually the most convenient.

o Use dmBlockMoveToKey, dmBlockMoveToKeyNo, and
dmBlockAdvanceKeys to reposition yourself in the header so that you can write
keys out of order.

35

4. Introduction to the DataModel library routines

36

In later releases we will support array, compound element, and vector header keys. These

may be written analogously:

e Use dmKeyCreateGeneric to create a descriptor for a generic key, and use various

dmSet routines to set the values;

e or use dmKeyWriteVector, dmKeyWriteArray, dmKeyWritelnterval to write

the values at the same time as creating the descriptor.

You should therefore be aware that in future key reads may need to take into account the

element and array dimension of the keys.
To find the total number of keys in the block, use dmBlockGetNoKeys.

To read a header key from a block, you have the following choices:

e Use dmKeyOpen to search for the key by name and return a descriptor for it.

Use dmBlockGetKey to return a descriptor for a key given its number (order) in
the header. Keys are numbered starting at 1. To get all the keys in the block, use
dmBlockGetKeyList.

Use dmKeyRead to search for the key by name, and return both a descriptor
and the key’s value, forced to a particular data type. If no key of that name is
present, dmKeyRead returns a null descriptor (and zero or blank in the value). Use
dmKeyReadVector to read vectored or array keys.

To read or write a scalar key value when you already have its descriptor, use the
dmGetScalar/dmSetScalar calls. You can use the dmGetArray/dmSetArray,
dmGetVector/dmSetVector, dmGetInterval/dmSetInterval for more compli-
cated kinds of key.

To compare two header keys (typically with the same name but from different files)
use dmDescriptorCompare.

4.4.2 Key properties

To get or alter the properties of a key, use the generic descriptor dmGet/dmSet calls:

e dmGetName, dmSetName - get/set name of key

36

4. Introduction to the DataModel library routines 37

e dmGetUnit, dmSetUnit - get/set unit of key

e dmGetDataType - get data type of key (cannot be changed)

e dmGetDesc, dmSetDesc - get/set descriptive comment for key

e dmGetArrayDim - get array dimensionality for key (cannot be changed)
e dmGetElementDim - get vector dimension for key (cannot be changed)
e dmGetElementType - get element type of key (cannot be changed)

e dmGetDisp, dmSetDisp - get display format hint for key

e dmKeyGetNo gets the number of the key in the header.

If the key has nonzero array dimensionality, the dmGetArrayDimensions and dmGe-
tArraySize routines may be used to find the shape of the array and the total number of
array elements per cell.

If the key is a vector key, the dmGetCptName, dmSetCptName routines can be used
to find or alter the name of each vector component and dmGetElementDim can be used
to find the number of components. For example, one might have a descriptor whose name
is DETPOS, with 2 components DETX and DETY representing different axes. This is in
contrast to an array descriptor which might be say DETX(2), with 2 values from the same
axis. One may even have vectored array descriptors but this is not supported for keys.

Each descriptor also has an element type and, possibly, an interval type. The element
types supported at release R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. The
dmRANGE and dmINTERVAL element types are understood to describe closed intervals.
Descriptors also have an Interval Type which allows you to specify open or semi-open inter-
vals, but this will not be implemented (dmGetIntervalType) until at least R3.

To get all the information for a descriptor in a single call, use the dmDescriptorInfo call.

To delete a key, use the dmDescriptorDelete call.

4.4.3 Comments

FITS-style COMMENT and HISTORY header information is supported via the dmBlock-
WriteComment and dmBlockReadComment routines.

37

4. Introduction to the DataModel library routines 38

4.5 Images
4.5.1 Opening an image

You can open an existing image in the following ways:

Open the next block in a dataset with dmDatasetNextBlock

Open a numbered block in a dataset with dmDatasetMoveToBlock.

Open a block by name with dmBlockOpen

Open a block and a dataset at the same time using dmImageOpen

In each of these cases except for dmImageOpen you must check that it is an image and
not a table, using dmDatasetGetBlockType, and call dmBlockClose when you are
done with the block. For dmImageOpen you are guaranteed that it is an image, and you
must call dmImageClose when you are done, which releases both the block and the parent
dataset at the same time. Once you have opened the image, if you want to access the image
data or axis info (rather than just the header info) you have to get the descriptor for that
image data using dmImageGetDataDescriptor.

You can delete the image entirely by using the dmBlockDelete call.

To create an image, you first create the image dataset or block using dmImageCreate or (if
the dataset exists) dmDatasetCreateImage. You may then name the axes using dmAr-
rayCreateAxisGroup or dmArrayCreateAxisGroups. dmImageGetDataDescrip-
tor returns the newly created image data descriptor on which you can use dmSetArray or
dmlImageDataSetPixel to write the values.

4.5.2 Basic image properties

Images have a set of n axes (often n=2) each of which has a dimension (the length of the axis).
They also have a set of pixel values arranged in an n-dimensional array. dmImageGet-
DataDescriptor returns a descriptor for the image data. You can then use dmGetArray
on this descriptor to get the array of values, just as if the image was a cell in a table. Alter-
natively, you can use dmImageDataGetPixel to get the values one pixel at a time. Use
dmGetDataType on the image data descriptor to find the data type of the pixel values.

38

4. Introduction to the DataModel library routines 39

To find the dimensionality of the image, the dmGetArrayDimensions routine tells you
what and how long each axis is.

e dmBlockGetName returns the name of the image.
e dmBlockGetDataset returns a pointer to the dataset of which the image is a member.

e dmBlockGetINo returns the number of the block in the dataset.

Example:

long* axes;

dmBlock* image = dmImageOpen("image.dat");

char name[MAXLEN];

dmBlockGetName (image ,name ,MAXLEN) ;

dmDescriptor* data = dmImageGetDataDescriptor(image);
dmDataType type = dmGetDataType(data);

naxes = dmGetArrayDimensions(data, &axes);
free(axes);

dmImageClose (image) ;

4.5.3 Image axes

e dmArrayCreateAxisGroup creates a descriptor for an axis. It names the axis and
creates a unit coordinate transform from the pixel values to the descriptor.

e dmArrayGetNoAxisGroups returns the number of axis groups on the image.
e dmArrayGetAxisGroup returns descriptor for nth axis group.

e To find the physical coordinates at a particular pixel number in the image, use dm-
CoordCalc with the axis group as argument.

e To find the pixel value corresponding to particular physical coordinates, use dmCo-
ordInvert with the axis group as argument.

e To find the world coordinates for the image, use dmDescriptorGetCoord on the

axis group. This returns the physical to world transformation.

Example:

39

4. Introduction to the DataModel library routines 40

long logicall2] = { 20, 20 };

double physicall[2];

double world[2];

dmBlock* image = dmImageOpen("myimage.fits[1:100,500:600]");
dmDescriptor* imageData = dmImageGetDataDescriptor(image);
long* axes;

long naxes = dmGetArrayDimensions(imageData, &axes);

long ngroups = dmArrayGetNoAxisGroups(imageData);
dmDescriptor* groupl = dmArrayGetAxisGroup(imageData, 1);
long dim = dmGetElementDim(groupl);

dmDescriptor* world_wcs = dmDescriptorGetCoord(groupl);
dmCoordCalc_1(groupl, logical, physical);

dmCoordCalc_d(world_wcs, physical, world);

free(axes);

4.5.4 Image data

e dmImageGetDataDescriptor returns the image data descriptor.
e To read the data from the array, use the dmGetArray call.
e To write the data to the array, use dmSetArray.

e To read or write a rectangular sub-array, use dmImageDataGetSubArray, dmIm-
ageDataSetSubArray.

e To read or write a single pixel, use dmImageDataGetPixel, dmImageDataSet-
Pixel.

e To interpolate in the image, use dmImageDatalnterpolate.
4.5.5 Image properties

To get or alter the properties of a Image, use the generic descriptor dmGet/dmSet calls on
the image data descriptor.

e dmGetName, dmSetName - get/set name of Image data quantity
e dmGetUnit, dmSetUnit - get/set unit of Image pixel values

e dmGetDataType - get data type of Image (cannot be changed)

40

4. Introduction to the DataModel library routines 41

e dmGetDesc, dmSetDesc - get/set descriptive comment for Image

e dmGetArrayDim - get array dimensionality for Image (cannot be changed)
e dmGetArrayDimensions - get shape of array (size of each axis)

e dmGetArraySize - get total number of array elements per cell.

e dmGetElementDim - get vector dimension for Image pixels (cannot be changed,
usually 1)

e dmGetElementType - get element type of Image pixels (cannot be changed, usually
dmVALUE)

e dmGetDisp, dmSetDisp - get display format hint for Image pixel values

If the Image is a vector Image (not supported until R3+), the dmGetCptName, dm-
SetCptName routines can be used to find or alter the name of each vector component and
dmGetElementDim can be used to find the number of components. Each descriptor also
has an element type and, possibly, an interval type. The element types supported at release
R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. However, images almost always
have an element type of dmVALUE.

To get all the information for a descriptor in a single call, use the dmDescriptorInfo call.

4.5.6 Image pixel lists

An alternate way of representing an image is as a list of pixels and their values. This is con-
venient for sparse arrays, and is related to the event list representation. In a future release,
we will support such pixel lists. The dmImageDataGetPixlistSize routine returns the
number of nonzero pixels in the cell. dmImageDataGetPixlist and dmImageDataSet-
Pixlist are used to read and write image data in the form of pixel lists. Note that in these
routines the pixel lists are the interface to the data, but the actual storage of the data in
the file is still the standard image format (whatever that is for the kernel in question).

4.6 Data Subspace
4.6.1 Subspace columns

We want to record in the file a description of how the data has been filtered. Although in
the underlying file format this may be implemented using header keywords, we treat this
information specially at the data model level.

41

4. Introduction to the DataModel library routines 42

To store a filter, use the dmSubspaceColCreate routines. For example, in our earlier sample
code we wrote two header keys descriping the PHA range:

dmKeyWrite_1(out_table, "CHANMIN", O, "channel", "Min PHA channel");
dmKeyWrite_1(out_table, "CHANMAX", MAXPHA, "channel", "Max PHA channel");

We might instead write

phamin = 0;
phamax = MAXPHA;
dmSubspaceColCreate_1(out_table, "PHA", '"channel", &phamin, &phamax, 1);

The difference is that the file now intrinsically knows that 0 and MAXPHA are the min and
max values that descripe the PHA variable. Similarly we might write

dmSubspaceColCreate_d(out_table, "TIME", "s", start, stop, ngti);

The SubspaceColCreate code will recognize TIME as a special case and store the array of
values in a separate GTI table. You can also force data to be stored in a separate table
in FITS using SubspaceColCreateTable; other kernels may do something different, but it
should be analogous to whatever they do for GTIs.

To store a new filter, use dmSubspaceColCreate or dmSubspaceCreateRegion.
To later alter its values, use dmSubspaceColSet to overwrite old values or dmSub-
spaceColUpdate to intersect new values with old values.

To find an existing filter, use dmSubspaceColOpen and then read its values using dm-
SubspaceColGet. These routines may be combined as dmSubspaceColRead. For a
region filter, use dmSubspaceColOpen followed by dmSubspaceGetRegion.

4.6.2 Subspace column properties

To get or alter the properties of a subspace column descriptor, use the generic descriptor
dmGet/dmSet calls:

e dmGetName, dmSetName - get/set name of subspace descriptor

e dmGetUnit, dmSetUnit - get/set unit of subspace descriptor

42

4. Introduction to the DataModel library routines 43

e dmGetDataType - get data type of subspace descriptor (cannot be changed)
e dmGetDesc, dmSetDesc - get/set descriptive comment for subspace descriptor

e dmGetArrayDim - get array dimensionality for subspace descriptor (cannot be
changed)

e dmGetElementDim - get vector dimension for subspace descriptor (cannot be
changed)

e dmGetElementType - get element type of subspace descriptor (cannot be changed)

e dmGetDisp, dmSetDisp - get display format hint for subspace descriptor

The subspace descriptor usually has array dimensionality 1; dmGet ArraySize routine may
be used to find the shape of the array and the total number of array elements per cell.
The dmSubspaceColSet routines are special in that they can change the number of array
elements for the subspace.

If the subspace descriptor is a vector subspace descriptor, the dmGetCptName, dm-
SetCptName routines can be used to find or alter the name of each vector component and
dmGetElementDim can be used to find the number of components. For example, one
might have a descriptor whose name is DETPOS, with 2 components DETX and DETY
representing different axes. This is in contrast to an array descriptor which might be say
DETX(2), with 2 values from the same axis. One may even have vectored array descriptors
but this is not encouraged.

Each descriptor also has an element type and, possibly, an interval type. The element
types supported at release R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. The
dmRANGE and dmINTERVAL element types are understood to describe closed intervals.
Descriptors also have an Interval Type which allows you to specify open or semi-open inter-
vals, but this will not be implemented (dmGetIntervalType) until at least R3.

To get all the information for a descriptor in a single call, use the dmDescriptorInfo call.

To delete a filter descriptor, use the dmDescriptorDelete call.

4.6.3 Accessing subspace columns

e dmBlockGetNoSubspaceCols returns the total number of filters.

e dmBlockGetNoSubspaceCpts returns the number of separate components in the
subspace (see the abstract design document for details).

43

4. Introduction to the DataModel library routines 44

e dmBlockGetSubspaceColNo gets a filter by number.

¢ dmBlockGetSubspace returns the full list of descriptors for the filters in the sub-
space.

e dmBlockSetSubspaceCpt sets the value of the subspace component number, used
by dmSubspaceColCreate etc.

e dmBlockGetCurrSubspaceCpt returns the current subspace component, used by
dmSubspaceColUpdate, etc.

e dmSubspaceColGetTableName returns the name of any associated table used by
the column.

4.6.4 Subspace routines

These routines may actually parse the data subspace to apply filtering constraints.

e dmBlockIntersectSubspace creates a new data subspace which is the intersection
of two others.

e dmBlockMergeSubspace creates a new subspace which is the union (logical OR) of
two others.

e dmBlockPrintSubspace is a diagnostic routine to show the current values in the
data subspace.

44

