
CXC-DM-008

CXC Data Model

Vol. 8

C Programmers' Guide

Chandra X-ray Center

O
tober 22, 2001

2

Contents

Copyright, Dis
laimer 5

Contributors and `Change Do
 Page' 6

Prefa
e 7

1 Introdu
tion 7

1.1 Overview . 7

1.2 FITS and QPOE . 8

1.3 Basi

on
epts . 8

1.4 Virtual Files . 9

1.5 A simple example . 10

1.6 Online CXC DataModel Referen
es . 15

2 Programming Considerations 15

2.1 Con�guration and Sample Code . 15

2.2 Stru
ture Obje
ts . 16

2.3 Memory Management . 17

2.4 De�ned Types . 17

2.5 dmDataType . 17

2.6 dmBlo
kType . 18

2.7 dmDes
riptorType . 18

2.8 dmElementType . 19

3 Interfa
e Parameters 19

2

3

3.1 Kernel Mnemoni
s . 19

3.2 Kernel Options . 20

3.3 Internals . 20

3.4 Error Handling and Diagnosti
s . 20

3.5 Counting in the DataModel . 21

3.6 Initialization Routines . 21

3.7 Multithreading . 21

4 Introdu
tion to the DataModel library routines 22

4.1 Dataset operations . 22

4.1.1 Opening and
losing �les . 22

4.1.2 Navigating within a dataset . 23

4.1.3 Kernel related routines . 24

4.1.4 Auxiliary dataset routines . 24

4.2 Tables . 24

4.2.1 Opening a table . 24

4.2.2 Basi
 table properties . 25

4.2.3 Creating table stru
ture . 25

4.2.4 Navigating in the table . 26

4.2.5 Cell-based I/O: introdu
tion . 26

4.2.6 Column properties . 27

4.2.7 Cell-based I/O read and write . 28

4.2.8 Cell-based I/O:
ompli
ated
ases . 29

4.2.9 Column-based I/O . 29

4.2.10 Row-based I/O . 29

3

4

4.2.11 Preferred Axes . 30

4.3 Coordinate Des
riptors . 31

4.3.1 Coordinates . 31

4.3.2 Coord values . 31

4.3.3 Physi
al and world
oordinate systems . 32

4.3.4 Coord properties . 34

4.4 Header keys . 35

4.4.1 Header keys . 35

4.4.2 Key properties . 36

4.4.3 Comments . 37

4.5 Images . 38

4.5.1 Opening an image . 38

4.5.2 Basi
 image properties . 38

4.5.3 Image axes . 39

4.5.4 Image data . 40

4.5.5 Image properties . 40

4.5.6 Image pixel lists . 41

4.6 Data Subspa
e . 41

4.6.1 Subspa
e
olumns . 41

4.6.2 Subspa
e
olumn properties . 42

4.6.3 A

essing subspa
e
olumns . 43

4.6.4 Subspa
e routines . 44

4

Copyright, Dis
laimer 5

Copyright, A
knowledgement, Dis
laimer

The software des
ribed in this do
ument is freely distributed under the following
opyright:

/***/

/* */

/* Copyright (
) 1999 Smithsonian Astrophysi
al Observatory */

/* */

/* Permission to use,
opy, modify, distribute, and sell this */

/* software and its do
umentation for any purpose is hereby */

/* granted without fee, provided that the above
opyright */

/* noti
e appear in all
opies and that both that
opyright */

/* noti
e and this permission noti
e appear in supporting do
u- */

/* mentation, and that the name of the Smithsonian Astro- */

/* physi
al Observatory not be used in advertising or publi
ity */

/* pertaining to distribution of the software without spe
ifi
, */

/* written prior permission. The Smithsonian Astrophysi
al */

/* Observatory makes no representations about the suitability */

/* of this software for any purpose. It is provided "as is" */

/* without express or implied warranty. */

/* THE SMITHSONIAN ASTROPHYSICAL OBSERVATORY DISCLAIMS ALL */

/* WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL */

/* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO */

/* EVENT SHALL THE SMITHSONIAN ASTROPHYSICAL OBSERVATORY BE */

/* LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES */

/* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA */

/* OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR */

/* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH */

/* THE USE OR PERFORMANCE OF THIS SOFTWARE. */

/* */

/**/

Published papers making use of CXC software should in
lude the following a
knowledgement:

This work has made use of software provided by the Chandra X-ray Center, operated

by a grant the Smithsonian Astrophysi
al Observatory by the National Aeronauti
s

and Spa
e Administration.

5

Contributors 6

Contributors and `Change Do
' Page

Jonathan M
Dowell, Mi
hael S. Noble, Kenny Glotfelty, Oliver Oberdorf, S
ott Randall

WWW: http://
handra.harvard.edu/

6

Prefa
e 7

Prefa
e

This Guide des
ribes the SAO/CXC data model software, whi
h allows the user to manip-

ulate data by �ltering and binning it. The CXCDM (CXC Data Model) library is used

throughout the CXC software to read and write data �les, and �lters those data �les using a

spe
ial `virtual �le' syntax whi
h quali�es the input �lename. This means that users
an use

any of the CXC tools to �lter their data on the
y, whenever an input �lename is prompted

for. The CXCDM also
omes with some basi
 tools for simple data manipulation. See the

Data Manipulation User's Guide for a des
ription of the virtual �le syntax and use of the

tools. The present do
ument is intended for programmers who want to write their own
ode

using the CXCDM .

The CXCDM was developed by a team at the Chandra X-ray Center (CXC, formerly

ASC), at the Smithsonian Astrophysi
al Observatory, Cambridge, Massa
husetts, USA. CX-

CDM will be an integrated part of the CXC Data Analysis System, and is being distributed

by the CXC as part of the
ight software release in spring 1999 ready for the laun
h of

Chandra in mid-1999.

1 Introdu
tion

1.1 Overview

The DataModel is an I/O subroutine library whi
h

� Gives a

ess to di�erent �le formats

� Provides a high level,
ommon abstra
tion of those formats

� Allows the appli
ation program to transparently a

ess a �ltered view of the underlying

�le, e.g. sele
ting rows and
olumns of tables.

7

1. Introdu
tion 8

1.2 FITS and QPOE

The DataModel gives you an abstra
t view of astronomi
al data �les and provides data

I/O transparently to FITS, QPOE and IMH format �les. Instead of using format-spe
i�

alls that involve
on
epts spe
i�
 to those formats (like the BITPIX variable in FITS �les),

we provide a uniform interfa
e whi
h deals in terms of a more abstrat des
ription - the

"Data Model". The lower layers of the library whi
h deal with spe
i�
 formats are
alled

"kernels". The two �le kernels
urrently supported by the DataModel ar
hite
ture are the

FITS kernel and the IRAF kernel. The FITS kernel provides I/O to FITS �les (in
luding

images, and binary and ASCII tables, but with some limitiations, parti
ularly for ASCII

tables and variable-length array
olumns in binary tables). Ea
h FITS kernel `dataset' is a

single FITS �le. The IRAF kernel handles IMH image �les and QPOE table/event list �les.

By default it
urrently treats a whole dire
tory as the `dataset', but individual �les
an also

be datasets. The use of dire
tories as datasets is now depre
ated.

1.3 Basi

on
epts

The DataModel treats data as a hierar
hy of datasets, blo
ks and des
riptors. Loosely,

datasets represent �les, blo
ks represent tables and images (in
luding their header informa-

tion), and des
riptors represent individual
olumns, header keywords,
oordinate systems,

and other named obje
ts within a blo
k. For instan
e, a table
olumn has a des
riptor,

sin
e it has a name, but a table row has neither a name nor a des
riptor. The uni�ed `de-

s
riptor'
on
ept helps us do useful,
exible things like treating header keywords as table

olumns whose value is the same in ea
h row. Des
riptors have other asso
iated des
riptive

information (hen
e the name), su
h as units,
omments, and data type.

� A dataset is an ordered set of blo
ks.

� A blo
k
onsists of header, data, and a data subspa
e whi
h des
ribes the range

of appli
ability of the data (spe
i�
ally, how the data has been �ltered).

� Ea
h blo
k
onsists of a set of
olumns; ea
h
olumn in the blo
k has the same

non-negative number of rows.

� In ea
h row, the
olumn
ontains a
ell whi
h is an n-dimensional array of elements

(but usually this n-dimensional array is a single element, i.e. n = 0).

� Elements are ve
tors of values (but usually just one value). For example, an (X,Y)

position pair is a 2-dimensional ve
tor. In the DataModel, we distinguish between

ve
tors like (X,Y,Z) (di�erent quantities grouped together) and arrays like X[10℄

(several values of the same quantity), so that you
an in the worst
ase have a ve
tor

8

1. Introdu
tion 9

array like (X,Y,Z)[10℄. In most
ases, though, data is s
alar, i.e. neither ve
torized

nor arrayed.

� A value
an be numeri
, string, or one of the other supported data types des
ribed

below.

� An image blo
k has one row and one
olumn,
ontaining a single N-dimensional
ell of

values.

There are several
avors of des
riptor:

key des
riptor whi
h
orresponds to a DataModel header key. In the DataModel, ker-

nel header keys whi
h des
ribe the stru
ture of the �le are not visible through the

DataModel interfa
e. For instan
e, a FITS TUNITn keyword whi
h des
ribes the unit

for a table
olumn doesn't
ount as a DataModel header key - instead, you
ontrol

it through altering the properties of that table
olumn. This lets you
on
entrate on

just the `extra' header keys whi
h
ontain s
ienti�
 rather than stru
tural information;

these are the DataModel header keys.

olumn des
riptor whi
h
orresponds to a table
olumn. Sin
e images are
onsidered to

be a trivial table, there is also a single `image data des
riptor' for ea
h image blo
k.

This is
urrently a separate type of des
riptor, but the distin
tion will soon be phased

out. Some
olumns are `ve
tor
olumns' with multiple
omponent
olumns, like 2-

dimensional positions.

subspa
e des
riptor whi
h
orresponds to �ltering information on the blo
k. Ea
h quan-

tity that the blo
k has been �ltered on has a
orresponding des
riptor. Sometimes

there is an asso
iated
olumn des
riptor too - maybe TIME is a
olumn and you've

also �ltered on TIME - and sometimes not: maybe you �ltered on PHA but then got

rid of that
olumn, so only the �lter information is left.

oord des
riptor whi
h represents a `pseudo-
olumn' de�ned as a fun
tion of another
ol-

umn. Currently we use these to implement support for WCS (World Coordinate Sys-

tem) information. A spe
ial
ase, the physi
al
oordinates along the axes of an image,

are
alled axis group des
riptors.

1.4 Virtual Files

When you open a DataModel blo
k to read it, you pass the subroutine (e.g. dmTableOpen)

a string
alled a `virtual �le spe
i�
ation' or `vspe
', rather than simply a �le and table

name. The blo
k des
riptor that is returned refers to that virtual �le, and all I/O is done in

terms of the �ltered view des
ribed by it. For instan
e,

9

1. Introdu
tion 10

table = dmTableOpen("bas.fits[stdevt℄[pha=20:30℄");

opens a virtual �le whi
h
onsists of only those rows in table `stdevt' of �le `bas.�ts' whi
h

have values of the PHA
olumn lying between 20 and 30. Unlike some virtual �le implemen-

tations, DataModel �ltering does not read in the entire �ltered �le at open time, although

some bu�ering is done as you read through the �le. This means there's no limitation on the

size of �le you
an read, but it's ineÆ
ient to randomly a

ess rows of a �ltered �le (e.g.

going to row number 42 may require the �le to be �ltered again).

In
ontrast, DataModel binning, e.g.

image = dmImageOpen("bas.fits[stdevt℄[bin x=32,y=32℄");

does
reate the entire binned image in memory the �rst time you try and read from the data

se
tion of the virtual �le. Binning may fail if insuÆ
ient memory is available. (We plan to

add
ode to get around this by rebinning on subse
tions, but that will be an `after laun
h'

addition). However, you
an a

ess the header and stru
ture of an arbitrarily large binned

image without triggering the binning - it's only when you read image pixels that binning

o

urs.

1.5 A simple example

Here is a simple example of
ode whi
h reads two tables and writes a third. In the GTI

table, we open
olumn des
riptors by expli
it
olumn numbers sin
e we know that di�erent

implementations of GTI tables use a variety of names for the
olumns but the data is always

in
olumns 1 and 2. We use the GetS
alars
ommand to read ea
h
olumn at one gulp, sin
e

we know the GTI is probably small and we won't take mu
h of a bu�ering hit. In the event

table, we open
olumn des
riptors by name, allowing the possibility that the order of the

olumns may be moved around. Sin
e the number of rows may be large, we read the data

row by row to avoid FITSIO bu�ering problems.

The header key read returns a des
riptor, whi
h we
an use to �nd out the key's unit or other

properties, but most often we use it just to test that it is non-null, i.e. that the keyword is

present.

Error
he
king is omitted from the
ode below for brevity, as are
omments sin
e the
ode

is des
ribed above in the text.

#in
lude "as
dm.h"

10

1. Introdu
tion 11

#in
lude <stdlib.h>

#in
lude <stdio.h>

#define MAXPHA 256

int main(int nargs,
har* args[℄)

{

dmDataset* input_ds;

dmDataset* output_ds;

dmBlo
k* gti_table;

dmBlo
k* event_table;

dmBlo
k* out_table;

dmDes
riptor *start_
ol, *stop_
ol, *pha_
ol;

dmDes
riptor *status_
ol;

dmDes
riptor *
hannel, *
ounts, *rate;

double* start;

double* stop;

double livetime, tzero;

long spe
trum[MAXPHA+1℄;

long pha, itzero, i, ngti, n, row;

short status;

for(i = 0; i < MAXPHA; i++)

spe
trum[i℄ = 0;

input_ds = dmDatasetOpen("bas.fits");

gti_table = dmBlo
kOpen(input_ds, "STDGTI");

start_
ol = dmTableOpenColumnNo(gti_table,1);

stop_
ol = dmTableOpenColumnNo(gti_table,2);

ngti = dmTableGetNoRows(gti_table);

start = (double*)mallo
(ngti*sizeof(double));

stop = (double*)mallo
(ngti*sizeof(double));

dmGetS
alars_d(start_
ol, start, 1, ngti);

dmGetS
alars_d(stop_
ol, stop, 1, ngti);

dmBlo
kClose(gti_table);

livetime = 0.0; for (i= 0;i<ngti;i++) { livetime += stop[i℄ - start[i℄; }

event_table=dmBlo
kOpen(input_ds, "STDEVT");

11

1. Introdu
tion 12

/* Look for any of various MJDREF keywords */

if(dmKeyRead_l(event_table, "MJDREFI", &itzero))

{

(void)dmKeyRead_d(event_table, "MJDREFF", &tzero);

tzero += itzero;

}

else if(!dmKeyRead_d(event_table, "MJDREF", &tzero))

if (dmKeyRead_l(event_table, "XS-MJDRD", &itzero))

{

(void)dmKeyRead_d(event_table, "XS-MJDRF", &tzero);

tzero += itzero;

}

else

{

tzero = 0.0;

printf("No MJDREF keyword found\n");

}

n = dmTableGetNoRows(event_table);

pha_
ol = dmTableOpenColumn(event_table, "PHA");

status_
ol=dmTableOpenColumn(event_table, "STATUS");

for (row = 0; row < n; row++)

{

pha = dmGetS
alar_l(pha_
ol);

status = dmGetS
alar_s(status_
ol);

if (status == 0) spe
trum[pha℄++;

dmTableNextRow(event_table);

}

dmBlo
kClose(event_table);

dmDatasetClose(input_ds);

free(start);

free(stop);

output_ds = dmDatasetCreate("spe
trum.fits");

out_table = dmDatasetCreateTable(output_ds, "TABLE");

hannel = dmColumnCreate(out_table,"CHANNEL",dmLONG,0,"
hannel","Pulse height
hannel");

ounts = dmColumnCreate(out_table,"COUNTS",dmLONG,0,"
ount","Spe
trum
ounts");

rate = dmColumnCreate(out_table,"RATE",dmDOUBLE,0,"
ount/s","Count rate");

dmKeyWrite_d(out_table, "EXPOSURE", livetime, "s", "Livetime");

dmKeyWrite_l(out_table, "CHANMIN", 0, "
hannel", "Min PHA
hannel");

dmKeyWrite_l(out_table, "CHANMAX", MAXPHA, "
hannel", "Max PHA
hannel");

12

1. Introdu
tion 13

dmKeyWrite_
(out_table, "CHANTYPE", "PHA", " ", "PH binning type");

for (pha = 0; pha <= MAXPHA; pha++)

{

dmSetS
alar_l(
hannel, pha);

dmSetS
alar_l(
ounts, spe
trum[pha℄);

dmSetS
alar_d(rate, spe
trum[pha℄/livetime);

dmTablePutRow(out_table,NULL);

}

dmBlo
kClose(out_table);

dmDatasetClose(output_ds);

return 0;

}

The same program
an be written using expli
it row data bu�ers and one-blo
k-at-a-time

dataset handling (some details omitted where the same as the previous version). The one-

blo
k-at-a-time dmTableCreate/dmImageCreate and dmTableOpen/dmImageOpen routines

are a
onvenien
e for the spe
ial
ase of a dataset with one blo
k in it, whi
h is very
ommon.

It minimizes the number of handles
oating around in the program. The row bu�ers have

the advantage of simpli
ity, but the huge disadvantage that the
ode is no longer robust to

hanges in data type and
olumn order in the input �le. Therefore, it should be used with

aution in produ
tion
ode intended for wide use.

dmBlo
k* gti_table;

dmBlo
k* event_table;

dmBlo
k* out_table;

dmDes
riptor *
hannel, *
ounts, *rate;

double livetime;

long spe
trum[MAXPHA+1℄;

long pha;

double tzero;

stru
t { double start; double stop; } gti;

stru
t { long pha; short status; } event;

stru
t { long
hannel; long
ounts; double rate; } row;

gti_table = dmTableOpen("bas.fits[STDGTI℄[
ols START,STOP℄");

livetime = 0.0;

while(dmTableGetRow(gti_table,>i) != dmNOMOREROWS)

livetime += gti.stop - gti.start;

13

1. Introdu
tion 14

dmTableClose(gti_table);

event_table=dmTableOpen("bas.fits[STDEVT℄[
olumns PHA,STATUS℄");

dmKeyRead_d(event_table,"MJDREF",&tzero);

while(dmTableGetRow(event_table, &event) != dmNOMOREROWS)

if (event.status == 0) spe
trum[event.pha℄++;

dmTableClose(event_table);

out_table = dmTableCreate("spe
trum.fits[SPECTRUM℄");

hannel = dmColumnCreate(out_table,"CHANNEL",dmLONG,0,"
hannel","Pulse height
hannel");

ounts = dmColumnCreate(out_table,"COUNTS",dmLONG,0,"
ount","Spe
trum
ounts");

rate = dmColumnCreate(out_table,"RATE",dmDOUBLE,0,"
ount/s","Count rate");

dmKeyWrite_d(out_table, "EXPOSURE",livetime, "s", "Livetime");

dmKeyWrite_l(out_table, "CHANMIN", 0, "
hannel", "Min PHA
hannel");

dmKeyWrite_l(out_table, "CHANMAX", MAXPHA, "
hannel", "Max PHA
hannel");

dmKeyWrite_
(out_table, "CHANTYPE","PHA", " ","PH binning type");

for (pha = 0; pha < MAXPHA; pha++)

{

row.
hannel= pha;

row.
ounts = spe
trum[pha℄;

row.rate = spe
trum[pha℄/livetime;

dmTablePutRow(out_table, &row);

}

dmTableClose(out_table);

Better yet, you
an also rewrite the �rst part of the
ode as follows:

dmBlo
k* event_table;

double livetime;

double* start;

double* stop;

long spe
trum[MAXPHA+1℄;

long ngti;

stru
t { long pha; short status; } event;

14

2. Programming Considerations 15

event_table=dmTableOpen("bas.fits[STDEVT℄[
ols PHA,STATUS℄");

dmKeyRead_d(event_table, "MJDREF", &tzero);

dmSubspa
eColGet_d(dmSubspa
eColOpen(event_table, "TIME"),

&start, &stop, &ngti);

livetime = 0.0;

for (i= 0;i<ngti;i++) { livetime += stop[i℄ - start[i℄; }

while(dmTableGetRow(event_table, &event) != dmNOMOREROWS)

if (event.status == 0) spe
trum[event.pha℄++;

dmTableClose(event_table);

In this version, we don't ever see the GTI table expli
itly. At the s
ienti�
 level, GTI is just

the �lter on the time attribute, you don't
are that in a FITS �le it's stored in a separate

extension. In fa
t, in a QPOE �le the GTIs are not stored in a separate table. So it's

important to provide this level of abstra
tion if you want the program to work on either

QPOE or FITS �les.

1.6 Online CXC DataModel Referen
es

This do
ument is kept online at http://
fa-www.harvard.edu/ j
m/as
/as
dm. At the mo-

ment the DataModel is available only for internal Chandra X-ray Center use. The sour
e

will be made available via FTP and WWW at the time of a general release. Email the

DataModel alias (as
dm�
fa.harvard.edu) or or Jonathan M
Dowell (j
m�
fa.harvard.edu)

for further information, or to obtain the sour
e
ode prior to the general release.

2 Programming Considerations

2.1 Con�guration and Sample Code

A
on�gure s
ript lets you in
lude or ex
lude spe
i�
 kernels and
on�gure the library for a

parti
ular platform.

The do
 dire
tory in the DataModel distribution
ontains additional notes on installation,

on�guration, and use of the DataModel, as well as HTTP referen
es to other astronomi
al

software upon whi
h the DataModel is layered.

15

2. Programming Considerations 16

The examples dire
tory
ontains several programs and make�les that
an be used both as a

test of the installation/
on�guration and as sample
ode.

In brief, the primary requirements for building an CXC DataModel program are:

- ensure #in
lude "as
dm.h" appears in your sour
e

- ensure your makefiles referen
e the Makevars.as
dm present in

the root of the DataModel distribution tree

- ensure your
ompilation and link rules referen
e the appropriate

DataModel ma
ros spe
ified within Makevars.as
dm.

DataModel programs link to the following libraries:

� libas
dm.a, the main DataModel library

� libw
s.a, Doug Mink's
oordinate transformation library

� libregion.a, the DataModel Region library for 2D region �ltering.

� lib
�tsio.a, Bill Pen
e's CFITSIO library (if the FITS kernel is enabled)

� libirafm.a, the CXC repa
kaging of the IRAF libraries (if the IRAF kernel is enabled)

� On some systems, libl.a and liby.a (the LEX and YACC libraries, or their FLEX and

BISON equivalents) may need to be expli
itly linked, as well as the libm.a C math

library.

2.2 Stru
ture Obje
ts

In support of the logi
al abstra
tions provided by the CXC DataModel, three obje
t types

are de�ned. Instan
es of these stru
tures should be
reated and modi�ed only through use of

the a

ess routines spe
i�ed in this do
ument. Dire
t a

ess of the data stru
ture internals

may jeopardize the integrity of your appli
ation and data, and hen
e should be avoided.

� dmDataset*: pointer to a DataModel dataset

� dmBlo
k*: pointer to a DataModel datablo
k (ie, table or image)

� dmDes
riptor*: pointer to a DataModel data des
riptor

16

2. Programming Considerations 17

2.3 Memory Management

To a large extent the CXC DataModel does not require the user to worry about details

of memory management. For example, it is not ne
essary to free memory asso
iated with

individual dmDes
riptor, dmBlo
k, or dmDataset pointers. Memory allo
ated to blo
ks and

the des
riptors they may
ontain will be freed when blo
k is
losed via an appropriate routine

all. Similarly, memory allo
ated to dmDataset pointers will be freed when the dataset is

properly
losed. To summarize, you should remember to
lose blo
ks and datasets, but you

never need to expli
itly
lose a des
riptor.

Another example
on
erns routines that return
hara
ter strings. Rather than have them

return
har* arrays, these routines instead mostly write into a pre-allo
ated
har* parameter,

up to a spe
i�ed maximum length parameter value (e.g., dmBlo
kGetName).

This maximum length does not in
lude the C null termination, but the DM will enfor
e null

termination of returned strings. Thus, in the
all

dmGetS
alar_
(dd, value, maxlen)

the variable "value" must be de
lared
har[maxlen+1℄, and the memory lo
ation

value[maxlen℄ may be set to zero.

Despite these attempts, there are still instan
es when the DM user will need to expli
itly

deal with memory management. For example, array memory allo
ated by routines that

return array pointers (e.g., dmTableOpenColumnList, dmBlo
kGetKeyList, or dmGetAr-

rayDimensions) will need to be expli
itly freed. In these
ases, though, ONLY the array

memory need be freed, not the individual array elements. Further details
an be found in

the a

ompanying fun
tion des
riptions and
ode samples.

2.4 De�ned Types

The DataModel de�ned types have integral values with symboli
 names as listed.

2.5 dmDataType

Ea
h dmDataType
orresponds to either a C built-in type or DataModel typedef.

17

2. Programming Considerations 18

dmDataType String Meaning Data/Class Type

dmSHORT S 2 byte integer dmshort, short

dmLONG L 4 byte integer dmlong, long

dmFLOAT F 4 byte IEEE real dmreal,
oat

dmDOUBLE D 8 byte IEEE real dmdouble, double

dmTEXT C String dmString

dmBLOCKREF BR String, referen
e to blo
k typedef blo
kref dmString

dmBOOL Q Logi
al typedef dmlogi
al int

dmBYTE UB 1 byte unsigned dmbyte, unsigned
har

dmUSHORT US 2 byte unsigned dmushort, unsigned short

dmULONG UI 4 byte unsigned dmulong, unsigned long

dmBIT BIT bit string bit array

The dmSHORT
lass is a ma
hine-dependent #de�ne to a 2 byte integer type; on many

ma
hines short will be equivalent. Same goes for other types. The logi
al and blo
kref types

are typdef'd not #de�ned to make sure they are
ompiler-distin
t from integer and string.

Other types may be added later. The blo
kref type is intended for use as a spe
ial `URL/�le

referen
e' type, but we haven't fully implemented it yet.

2.6 dmBlo
kType

The dmBlo
kType des
ribes whether a blo
k is a table, image, or something else.

dmBlo
kType String

dmTABLE TABLE

dmIMAGE IMAGE

dmUNKNOWNBLOCK UNKNOWN

2.7 dmDes
riptorType

dmDes
riptorType String

dmCOLUMN for
olumnar table data a

ess

dmKEY for header keyword a

ess

dmIMAGEDATA for a

ess to image data (depre
ated)

dmCOORD for
oordinate transform des
riptors

dmSUBSPACE for data subspa
e des
riptors

dmUNKNOWNDESCRIPTOR for unknown des
riptors

18

3. Interfa
e Parameters 19

Spe
ial
ases: a spe
ial type of dmCOORD is an image axis; a spe
ial type of dmCOLUMN

is a s
alar
olumn des
riptor whi
h is really one
omponent of a ve
tor
olumn.

2.8 dmElementType

The DataModel
onsiders tabular
olumn and image data in terms of "
ells," the interse
-

tion of a row and
olumn, ea
h of whi
h
ontain one or more "elements," ea
h of whi
h in

turn represent data in terms of the fundamental dmDataTypes. Cells
an either be s
alar,

1-dimensional arrays, or N-dimensional arrays, with
onstituent element types of:

dmElementType String Meaning

dmVALUE V Value (value)

dmRANGE R Range (min,max)

dmINTERVAL I Interval (value,min,max)

Note that elements
an be multidimensional. For example,
onsider a
ell
ontaining ele-

ments representing points in Cartesian 3D spa
e. Ea
h (x,y,z) triple would be a dmValue

element of dimensionality 3. Note that sin
e
ell dimensionality is independent of element

dimensionality, it would still be possible to de�ne the
ell in question here as a s
alar
ell -

meaning ea
h
ell would
ontain only 1 (x,y,z) triple.

3 Interfa
e Parameters

3.1 Kernel Mnemoni
s

The DM kernel mnemoni
s provide an en
apsulated way of referen
ing the the ETOOLS

kernel
urrently being used for I/O on a given dataset. Note that multiple datasets may be

opened during the exe
ution lifetime of a DM appli
ation, with a potentially distin
t kernel

used for I/O on ea
h.

Kernel Mnemoni
 Value Des
ription

dmFITSKERNEL "FITS" interfa
e to CFITSIO

dmIRAFKERNEL "IRAF" interfa
e to native IRAF

19

3. Interfa
e Parameters 20

3.2 Kernel Options

The kernel options, invoked with dmKernelSetOption, allow you to �ne-tune the behaviour

of the kernels outside of the DataModel paradigm. For instan
e, the DM doesn't know the

di�eren
e between FITS BINTABLE and FITS ASCII Table representations, so we have to

ontrol them by the `ba
k door'. The TABLE=STSDAS and COL=VARARRAY options

are not yet supported.

Kernel Option E�e
t

'TABLE=BINTABLE' Write tables in BINTABLE format if kernel is FITS

'TABLE=ASCII' Write tables in ASCII table format if kernel is FITS

'COL=VARARRAY' Next
reated array
ol is a variable array, if kernel is FITS

'TABLE=QPEVT' Write tables in QPOE event format if kernel is IRAF

'TABLE=STSDAS' Write tables in STSDAS format if kernel is IRAF

3.3 Internals

The DM internal parameters are used by the dmSetInternals routine.

Internal Parameter Value E�e
t

dmTABLEBUFFERSIZE "bu�ersize" Tune the size of the internal DM table bu�er. Note that you must

not set the bu�er size smaller than the largest number of rows

that your program will read in any single table I/O
all. Setting this

parameter to a low number
an redu
e the amount of memory your program

onsumes, or
onversely, setting it higher may in
rease eÆ
ien
y by

ensuring that large tables are handled by larger bu�ers.

3.4 Error Handling and Diagnosti
s

Most of the CXC DataModel routines indi
ate
ompletion status either by returning an "int"

status
ode or by returning unusual values (e.g., NULL pointers or negative row numbers).

The #de�ne symbol "dmErrCode", equivalent to "int", is also provided for use with the

return status
odes. Regardless of whether or not a DataModel API fun
tion provides

expli
it error state indi
ation, the
all
ompletion status
an be determined by using the

dmGetError and dmGetErrorMessage routines.

The dmFAILURE status
ode indi
ates some error
ondition exists, while dmSUCCESS

indi
ates the
all
ompleted su

essfully. Other status
odes and return values are listed

as appropriate with the asso
iated APi fun
tions. The numeri
 values may
hange in the

20

3. Interfa
e Parameters 21

future, and we are
onsidering various s
hemes su
h as using negative values to indi
ate a

non-fatal error or warning.

Use dmGetVersion to �nd the
urrent DataModel release version. This may be needed if

you send email to the CXC about possible bugs.

In later releases, we hope to provide dmDatasetPrintKernel and dmBlo
kPrintKernel

to inspe
t the
ontents of the �le at the kernel level, bypassing the layer of interpretation

imposed by the DataModel. Use dmBlo
kGetNoKernelKeys and dmBlo
kGetKer-

nelKey to inspe
t header entries at the kernel level. Until these routines exist, you should

use the appropriate native tools (FTOOLS fdump, PROS qplist) to get a kernel-level view

of the �les.

3.5 Counting in the DataModel

The CXC DataModel uses a ones-based
ounting system
onsistently. That is, the smallest

blo
k number, key number, image pixel
oordinate,
olumn number, or row number will

ALWAYS be 1. In parti
ular, note that FTOOLS
ounts FITS HDUs from zero, while we

ount from 1.

3.6 Initialization Routines

It is not ne
essary within DataModel programs to expli
itly
all the IRAF initialization

routine(s) when linking against the IRAF/QPOE kernel, as the ne
essary IRAF initializa-

tion(s) will be performed internally by the DataModel. In fa
t, sin
e one of the goals of the

DataModel is to free the user from �le-format spe
i�
s, the use of any expli
it �le-format

spe
i�
 fun
tionality is dis
ouraged.

Users wishing to expli
itly perform initialization at some well-de�ned point within their

appli
ation may use the dmInit routine.

3.7 Multithreading

At the time of this writing the CXC DataModel is NOT thread-safe. The de
ision to im-

plement the DataModel in this manner was primarily due to the fa
t that the DataModel

library is layered on other astronomi
al software libraries, most of whi
h are themselves NOT

thread-safe.

21

4. Introdu
tion to the DataModel library routines 22

4 Introdu
tion to the DataModel library routines

Although there are a large number of routines in the library, they
an be grouped fairly

simply. Many routines are used in multiple
ontexts; for instan
e, the same routine may

be used to read data from a table or an image. This se
tion organizes the routines by

usage, brie
y des
ribing the routines to use in ea
h
ontext - for instan
e, table routines

are grouped together in one subse
tion, and the same routine may be referred to in several

subse
tions. However, the details of the routine are not given here, but in the �nal se
tion

of the do
ument where all the routines are des
ribed in alphabeti
al order.

4.1 Dataset operations

We �rst des
ribe operations at the dataset level. Re
all that ea
h dataset
ontains a series

of table blo
ks and/or image blo
ks.

4.1.1 Opening and
losing �les

To open an existing dataset, use either the dmDatasetOpen routine or (if you are only

interested in one table or image in the dataset) the dmTableOpen/dmImageOpen routines.

The former returns a pointer of type dmDataset*, and you
an then use that pointer to open

various blo
ks (tables or images) in the dataset using dmBlo
kOpen. The latter dire
tly

returns a pointer of type dmBlo
k*. Ea
h of the Open routines has a
orresponding Close

routine and a
orresponding Create routine for opening a new obje
t to write to. We also

provide a parallel set of OpenUpdate routines to let you a

ess �les read-write.

Table 1: Open/
lose routines

dmDatasetOpen Open dataset by name, return dmDataset*

dmDatasetOpenUpdate Open dataset by name, read-write, return dmDataset*

dmDatasetCreate Same for
reation

dmDatasetClose Close a dataset.

dmBlo
kOpen Open blo
k (table/image) in dataset, return dmBlo
k*

dmBlo
kCreate Same for
reation, don't use for images

dmDatasetCreateTable Blo
k
reate for table

dmDatasetCreateImage Blo
k
reate for image, spe
ify size

dmBlo
kClose Close blo
k opened by dmBlo
kOpen/Create

dmTableOpen Open table and dataset at same time, return dmBlo
k*

22

4. Introdu
tion to the DataModel library routines 23

dmTableOpenUpdate Open table and dataset at same time, read-write, return dmBlo
k*

dmTableCreate Same for
reation

dmTableClose Close dataset opened by dmDatasetTableOpen/Create

dmImageOpen Open image and dataset at same time, return dmBlo
k*

dmImageOpenUpdate Open image and dataset at same time, read-write, return dmBlo
k*

dmImageCreate Same for
reation

dmImageClose Close image

If you open a dataset using the dmTable or dmImage routines, you only have a blo
k pointer.

If you then need the dataset pointer you
an get it with the dmBlo
kGetDataset routine.

Another routine to
reate blo
ks is the dmBlo
kCreateCopy routine, whi
h
opies the

stru
ture of an existing blo
k without its data.

4.1.2 Navigating within a dataset

Most of the time we work with a single blo
k within the dataset. If you have an open dataset,

and want to
hange to a di�erent blo
k within the dataset, how do you get there? There are

several ways. You may a

ess the blo
ks sequentially, or by number, or by name.

To a

ess the blo
ks sequentially, use the dmDatasetNextBlo
k routine. This routine will

open the next blo
k, (the �rst time, it will open the �rst blo
k in the dataset), and repeated

alls will go through all the blo
ks until the end of the dataset, when it will return null.

The dmDatasetGetCurrentBlo
kNo inquiry routine returns the number of the most

re
ent blo
k to have been opened. The dmDatasetAdvan
eBlo
ks routine moves ahead

or ba
k by a spe
i�ed number of blo
ks, so dmDatasetNextBlo
k is equivalent to
alling

dmDatasetAdvan
eBlo
ks with an argument of 1.

To a

ess the blo
ks by number, use dmDatasetMoveToBlo
k. dmDatasetGetBlo
k-

Name lets you
he
k the name of a numbered blo
k before opening it. The name of the

dataset itself is available via dmDatasetGetName.

The dmDatasetGetNoBlo
ks inquiry routine returns the total number of blo
ks in the

�le.

The dmDatasetGetBlo
kType routine is used to �nd out whether the blo
k you are about

to open is a TABLE or an IMAGE. If you have opened the blo
k (i.e. you have a dmBlo
k*

pointer) you
an use the dmBlo
kGetType or dmBlo
kGetTypeStr routines to �nd out

what kind of blo
k you have.

23

4. Introdu
tion to the DataModel library routines 24

4.1.3 Kernel related routines

The following routines allow
ontrol over whi
h kernel is used to make new �les. In normal

use we want the existen
e of di�erent kernels to be invisible to the programmer, so we

separate these
alls out instead of making the kernel id an argument to CreateDataset as in

the EDS layer.

Use dmKernelSetCreate to spe
ify the kernel to be used when
reating new datasets from

s
rat
h. Use dmKernelSetCopy to spe
ify the kernel to be used when making a
opy from

an existing dataset (usually its kernel is
opied too).

Use dmKernelGetCreate and dmKernelGetCopy to inspe
t the
urrent settings.

dmKernelGetList tells you what kernels are available at run-time.

dmDatasetGetKernel is used to �nd out whi
h ETOOLS kernel (i.e. whi
h underlying

disk format) is being used for a parti
ular dataset.

4.1.4 Auxiliary dataset routines

There are some auxiliary routines whi
h are used less often to manipulate datasets.

� dmFileExists is used to test existen
e of a �le.

� dmDatasetA

ess is used to test whether a dataset exists, prior to opening it. It

a
tually opens the dataset, and is more general than dmFileExists sin
e it handles the

ase where a dataset
onsists of multiple �les, but will fail if the �le is
orrupted.

� dmDatasetDestroy deletes a dataset on disk by name.

� dmDatasetDelete deletes a dataset on disk whi
h is already open; often it's more

robust to use dmDatasetDestroy instead.

4.2 Tables

4.2.1 Opening a table

You
an open an existing table in the following ways:

� Open the next blo
k in a dataset with dmDatasetNextBlo
k.

24

4. Introdu
tion to the DataModel library routines 25

� Open a numbered blo
k in a dataset with dmDatasetMoveToBlo
k.

� Open a blo
k by name with dmBlo
kOpen.

� Open a blo
k and a dataset at the same time using dmTableOpen.

� Open a table for row-based I/O using dmTableOpenSele
t (see Row Based I/O

below).

In ea
h of these
ases ex
ept for dmTableOpen you must
he
k that it is a table and not an

image, using dmDatasetGetBlo
kType or dmBlo
kGetType, and
all dmBlo
kClose

when you are done with the blo
k. For dmTableOpen you are guaranteed that it is a table,

and you must
all dmTableClose when you are done, whi
h releases both the blo
k and

the parent dataset at the same time.

You
an delete the table entirely by using the dmBlo
kDelete
all.

You
an
reate a new table and dataset using dmTableCreate. To
reate a dataset

with multiple tables and/or images, use dmDatasetCreate to make the dataset and dm-

DatasetCreateTable,dmDatasetCreateImage to
reate new tables and/or images. For

�ne
ontrol, use dmKernelSetOption �rst, to
ontrol details of the disk format used (e.g.

FITS ASCII tables versus the default BINTABLE).

4.2.2 Basi
 table properties

.

� dmBlo
kGetName returns the name of the table.

� dmBlo
kGetDataset returns a pointer to the dataset of whi
h the table is a member.

� dmBlo
kGetNo returns the number of the blo
k in the dataset.

� dmTableGetNoCols returns the number of
olumns in the table.

4.2.3 Creating table stru
ture

The dmColumnCreate
all
reates a s
alar
olumn with a spe
i�ed data type and name.

Repeated
alls may be used to
reate all the
olumns for a new table. After you start writing

data to the table, you
an't add any more
olumns.

25

4. Introdu
tion to the DataModel library routines 26

To make an array
olumn (a 1-dimensional array of elements in ea
h table
ell), use the

dmColumnCreateArray
all.

You
an also store an entire n-dimensional array in ea
h table
ell, using a
olumn
reated

with the dmColumnCreateNDArray routine.

The data model introdu
es the
on
ept of ve
tor
olumns, in whi
h several
olumns are

grouped together ea
h with their own name but also with a
ommon name. To
reate su
h

a ve
tor
olumn, use the dmColumnCreateVe
tor
all.

Another kind of grouped
olumn imposes a parti
ular meaning on the grouping, using the

on
ept of
ompound element types (also known as Intervals). This allows us to store ranges

of values rather than point values. For instan
e, the Good Time Intervals (START,STOP)

are more elegantly handled as a RANGE element for the TIME variable. Columns of this

kind are
reated with the dmColumnCreateElement routine (not yet supported).

Combining the high level
onstru
ts to produ
e arrays of ve
tored
ompound element types

may be done using the (not yet supported) dmColumnCreateGeneri
 routine; all the

other
olumn
reate routines are spe
ial
ases of this. You
an de�ne a set of
olumns at

on
e with dmTableCreateColumns (s
alar
olumns only) or dmTableCreateGeneri
-

Columns (generi

olumns).

4.2.4 Navigating in the table

To start with, you are always at the �rst row of the table. Repeated read/write operations

will not
hange the row. To move to another row, use dmTableNextRow or dmTable-

SetRow (but to write a row, you must use dmTablePutRow, as des
ribed below). To

�nd out whi
h row you are at, use dmTableGetRowNo. The routine dmTableGet-

NoRows tells you how many rows are in the table. However, note that in a �ltered table,

dmTableGetNoRows has to �lter the entire table to �gure this out, so if you
an avoid

it, do.

To read or write data to the table, you
an use
ell-based I/O whi
h operates on one
olumn

of one row at a time,
olumn-based I/O whi
h reads/writes multiple rows of a single
olumn,

or row-based I/O whi
h operates on a whole row at on
e using a C stru
ture.

4.2.5 Cell-based I/O: introdu
tion

To use
ell-based I/O you must �rst obtain des
riptors for ea
h
olumn you wish to a
-

ess, using dmTableOpenColumn or dmTableOpenColumnNo. You
an get the entire

26

4. Introdu
tion to the DataModel library routines 27

list of
olumns using dmTableOpenColumnList. Then you
an navigate the rows using

dmTableNextRow or dmTableSetRow, and use the GetS
alar or SetS
alar
alls and

their relatives to read or write the data.

4.2.6 Column properties

To get or alter the properties of a
olumn, use the generi
 des
riptor dmGet/dmSet
alls:

� dmGetName, dmSetName - get/set name of
olumn

� dmGetUnit, dmSetUnit - get/set unit of
olumn

� dmGetDataType - get data type of
olumn (
annot be
hanged)

� dmGetDes
, dmSetDes
 - get/set des
riptive
omment for
olumn

� dmDes
riptorGetLength - get length of variable (bytes for string, bits for bitmask,

0 otherwise).

� dmGetArrayDim - get array dimensionality for
olumn (
annot be
hanged)

� dmGetElementDim - get ve
tor dimension for
olumn (
annot be
hanged)

� dmGetElementType - get element type of
olumn (
annot be
hanged)

� dmGetDisp, dmSetDisp - get display format hint for
olumn

� dmColumnGetNo - get number of
olumn in table

� dmDes
riptorGetRange, dmDes
riptorSetRange - get/set legal range of values

for
olumn.

� dmDes
riptorGetBin,dmDes
riptorSetBin - get/set default binning fa
tor for

olumn

� dmDes
riptorGetNull,dmDes
riptorSetNull - get/set null value for
olumn

If the
olumn has nonzero array dimensionality, the dmGetArrayDimensions and dmGe-

tArraySize routines may be used to �nd the shape of the array and the total number of

array elements per
ell.

If the
olumn is a ve
tor
olumn, the dmGetCptName, dmSetCptName routines
an

be used to �nd or alter the name of ea
h ve
tor
omponent and dmGetElementDim
an

be used to �nd the number of
omponents. For example, one might have a des
riptor whose

27

4. Introdu
tion to the DataModel library routines 28

name is DETPOS, with 2
omponents DETX and DETY representing di�erent axes. This

is in
ontrast to an array des
riptor whi
h might be say DETX(2), with 2 values from the

same axis. One may even have ve
tored array des
riptors but this is not en
ouraged. The

routine dmGetCpt returns a s
alar
olumn des
riptor
orresponding to a single
omponent

of a ve
tor
olumn.

Ea
h des
riptor also has an element type and, possibly, an interval type. The element

types supported at release R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. The

dmRANGE and dmINTERVAL element types are understood to des
ribe
losed intervals.

Des
riptors also have an Interval Type whi
h allows you to spe
ify open or semi-open inter-

vals, but this will not be implemented (dmGetIntervalType) until at least R3.

To �nd out whi
h blo
k your des
riptor belongs to, use dmDes
riptorGetBlo
k.

To
he
k that your des
riptor really is a
olumn and not a key, you
an use the dmDes
rip-

torGetType routine.

4.2.7 Cell-based I/O read and write

To read/write a s
alar
ell value from/to the
urrent row, use the
olumn des
riptor and the

dmGetS
alar/dmSetS
alar
all.

Like FITSIO, our default approa
h to getting data in and out of tables is
ell-based I/O,

where we work on one row and
olumn at a time. Thus, the dmTableOpenColumn routine

returns a dmDes
riptor* for the
olumn:

dmDes
riptor* pha_
ol = dmTableOpenColumn(table, "PHA");

Reading from this
olumn gets the value from the
urrent row, whi
h initially is the �rst row

of the table:

pha = dmGetS
alar_l(pha_
ol);

This dmGetS
alar routine gets a single value from a s
alar type
olumn (the usual sort).

dmGetS
alar has various versions subs
ripted with the data type of the quantity to be

returned; thus dmGetS
alar l returns a value that
an be stored as a 4 byte integer. To get

the value for the next row, we must advan
e the
urrent row:

dmTableNextRow(table);

28

4. Introdu
tion to the DataModel library routines 29

4.2.8 Cell-based I/O:
ompli
ated
ases

As well as s
alar
olumns, our data
an be ve
tor
olumns, 1-D array
olumns, N-D array

olumns, and ve
tor array
olumns. The dmGetS
alar and dmPutS
alar routines ea
h have

ousins to handle these more
ompli
ated types of data. For instan
e, the dmGetArray

family returns a 1-D array of values for an array
olumn.

To handle array and ve
tor
olumns, use dmGetArray/dmSetArray, dmGetVe
-

tor/dmSetVe
tor.

For array
olumns, to read or write a re
tangular sub-array, use dmImageDataGetSub-

Array, dmImageDataSetSubArray. To read or write a single pixel, use dmImage-

DataGetPixel, dmImageDataSetPixel.

4.2.9 Column-based I/O

There is another family of routines, dmGetS
alars/dmSetS
alars, whi
h reads/writes

many rows at on
e. It may be used for
olumn-based I/O, whi
h is eÆ
ient if the table

is small or if the whole table has been read into memory. However, full
olumn-based I/O

is not eÆ
ient when working on a large FITS �le whi
h CFITSIO has bu�ered to be only

partly in memory, sin
e the whole table must be reread ea
h time you read in a
olumn. In

this
ase, you may use dmGetS
alars with an intermediate number of rows, and read a bat
h

of re
ords at a time.

A
ompanion set of routines, dmGetVe
tors/dmSetVe
tors, supports ve
tor
olumns.

4.2.10 Row-based I/O

The most
onvenient way to a

ess data in a table when you know what data you want is

to use the row-stru
t I/O method. In this method, you de�ne a C stru
t
ontaining the

information you are interested in for ea
h row of the table. For example, suppose that you

know the table
ontains the
olumns PHA, STATUS and TIME of types long, short and

double respe
tively. Then de�ne the stru
t:

stru
t { long pha; short status; double time } myrow;

If this stru
ture
orresponds exa
tly to the table stru
ture, you
an dire
tly use the

dmTableGetRow routines to �ll myrow with the data and use e.g. myrow.status as a vari-

able. If the table might have extra rows or have the rows in a di�erent order, you have to

29

4. Introdu
tion to the DataModel library routines 30

tell the dm library expli
ity what your myrow stru
t
ontains. To do this, use the "[
ols

pha,status,time℄" sele
tion operator of the virtual �le syntax.

Note: for string
olumns, in
lude the extra byte for the terminating null of a C string. For

example

stru
t { long pha;
har label[STRSIZE+1℄; dmBool flag; double values[7℄ } myrow;

See the program examples/dmtest.
 in the datamodel sour
e tree for
ode whi
h uses su
h

a row.

The dmTableGetRow routine returns the data for the
urrent row in the row-stru
ture.

The dmTablePutRow routine writes the row-stru
ture to the internal row bu�ers and

hen
e to the table. Both of these routines advan
e the row pointer, so you do NOT need to

all dmTableNextRow when using these routines.

The advantages of row-based I/O are balan
ed by the disadvantage of a la
k of type
he
king

on the data. Also, if you don't know what data is in the table in advan
e (generi
 table

browsing or
al
ulation tools), things get a bit tri
kier. The dmTableAllo
Row routine,

and the dmTableGetColO�set and dmTableGetColPtr routines, provide further row-

based I/O fun
tionality to support run-time de�nition of the row-based I/O stru
ture.

4.2.11 Preferred Axes

Typi
ally a table may
ontain a small number of
ru
ial
olumns and a larger number of

olumns with `extra' information. The user will often regard the table as being either a

tabulation of one dependent variable Y against independent variables X1, X2, ...XN (`his-

togram interpretation'), in other words a fun
tion Y(X1,X2,...XN); in this
ase usually the

values of (X1,..XN) do not repeat. Alternatively, the table may be a list of measurements

of independent variables X1, ... XN, whi
h the user may want to
orrelate one with another

(`raw table interpretation') or make a histogram of as N(X1,X2,...XN) (`event list interpre-

tation'). In `�rst look' type software, it is useful to be able to �gure out whi
h
olumns of

the table
orrespond to Y, X1, ..XN and whi
h are `extra' information. The answer to this

for a given table may depend on what the user is interested in, but often there are suitable

defaults. For example, a photon event list might reasonably default to some parti
ular pair

of spatial
oordinates (X,Y), and a spe
trum histogram might default to
ounts as a fun
tion

of
hannel: COUNTS(CHANNEL). We provide a
onvention to re
ord this information in

the header of the table.

The dmBlo
kSetPref may be used to re
ord the defaults in the table; The dmBlo
kGet-

Pref routine may then be used to extra
t the information.

30

4. Introdu
tion to the DataModel library routines 31

4.3 Coordinate Des
riptors

4.3.1 Coordinates

Columns in a table or the axes of an image may have
oordinate systems atta
hed to them.

The
oordinate system
an be thought of as a 'virtual
olumn' whi
h is de�ned in terms of

the original
olumn. You get its dmDes
riptor* using the dmDes
riptorGetCoord routine. In

the simple
ase of a s
alar
olumn with a linear
oordinate transform, you get the standard

transformation parameters CRPIX, CRVAL and CDELT using the dmCoordGetLinTrans-

form routine.

To write a
oordinate system on a table
olumn or an image axis group, use the dmCoord-

Create routines. To make an image axis group (a `physi
al
oordinate system' in IRAF

terminology), use dmArrayCreateAxisGroup. To get the group number of the axis

group use dmCoordGetAxisGroupNo, and to open an axis group use dmArrayGe-

tAxisGroup.

To �nd the default
oordinate asso
iated with a des
riptor (if any),
all dmDes
riptor-

GetCoord. There may be more than one
oordinate asso
iated with a des
riptor; dmDe-

s
riptorGetNoCoords and dmDes
riptorGetCoordNo may be used to get them all.

Conversely, dmCoordGetParent may be used to �nd the parent des
riptor of a
oordinate

des
riptor.

You
an �nd the transform type using dmCoordGetTransformType, and the transform

values CRPIX, CRVAL, CDELT using dmCoordGetTransform. To get the transform

parameters, use dmCoordGetParams. To
hange the transform values, use dmCoord-

SetTransform.

4.3.2 Coord values

Suppose you have a s
alar dmDOUBLE
olumn
alled TIME (des
riptor time with a
o-

ordinate
alled DATE (des
riptor date = dmDes
riptorGetCoord(time)). The value

of TIME in the
urrent row might be 14823.3 se
onds; the
orresponding value of DATE

might be JD 2450423.52 days. To read the value of TIME, you use dmGetS
alar d on

the
olumn data des
riptor time. To get the value of DATE for this row, you simply use

dmGetS
alar d on the
oordinate des
riptor date instead.

However, if you want to �nd the DATE for some value of TIME whi
h is not in the table, you

must apply the transform expli
itly by using dmCoordCal
. The inverse transformation

is also provided, dmCoordInvert.

31

4. Introdu
tion to the DataModel library routines 32

Example:

dmDes
riptor* time = dmTableOpenColumn(table, "TIME");

dmDes
riptor* date = dmGetDes
riptorCoord(time);

dmTableNextRow(table);

double date_value = dmGetS
alar_d(date);

double time_value = dmGetS
alar_d(time);

double time_value2 = 45.8;

double date_value2;

double date_value3 = 45382.4;

double time_value3;

dmCoordCal
_d(date, &time_value2, &date_value2);

dmCoordInvert_d(date, &date_value3, &time_value3);

4.3.3 Physi
al and world
oordinate systems

Images have both physi
al and world
oordinate systems. (Tables don't have physi
al sys-

tems; the
olumn values are
onsidered to be the physi
al values). The Image LOGICAL

COORDINATES are just the pixel numbers. In the DM, we imagine that for ea
h logi
al

axis, there is a physi
al axis whi
h has a linear s
aling on the logi
al axis, and there may

also be a world
oordinate axis whi
h is a further transform on the physi
al axis.

Remember that a 2-D image in the DM
an
onsist either of two axis groups ea
h with

one subaxis, or of a single axis group with two subaxes. For instan
e, an image with an

RA,DEC WCS has a single axis group (NGROUPS = 2) and the group has dimension 2.

The
oordinate systems atta
h to the groups, not the individual axes, so there is a single

physi
al
oord des
riptor and a single world
oord des
riptor in this
ase, instead of two

separate ones for ea
h axis. That's be
ause the mapping of X and Y to RA and DEC mixes

X and Y inextri
ably. You
an yse dmArrayGetNoAxisGroups to get the number of axis

groups in an image.

Examples:

Logi
al Physi
al World

Quantity Binned pixel Original pixel RA, De
 value

Name (X_BIN,Y_BIN) SKY(X,Y) EQPOS(RA,DEC)

Type Always integral Floating? Floating

Unit - pixel deg

32

4. Introdu
tion to the DataModel library routines 33

Quantity Light
urve bin Mission time Julian day

Name TIME_BIN TIME JD

Unit pixel s d

Type integral double double

To read these from a 2D image, we do:

dmDes
riptor* imageData;

dmDes
riptor* phys[2℄;

dmDes
riptor* world[2℄;

long ngroups, group, subaxis, axis, dim;

double p
rpix[2℄, p
rval[2℄, p
dlt[2℄;

double w
rpix[2℄, w
rval[2℄, w
dlt[2℄;

ngroups = dmArrayGetNoAxisGroups(imageData);

for (group = 0; group < ngroups; group++) {

phys[group℄ = dmArrayGetAxisGroup(imageData, group+1); /* 1-based group no*/

world[group℄ = dmDes
riptorGetCoord(phys[group℄);

dim = dmGetElementDim(phys[group℄);

dmCoordGetTransform_d(phys[group℄, p
rpix, p
rval, p
dlt, dim);

if (world[group℄ != NULL) {

dmCoordGetTransform_d(world[i℄, w
rpix, w
rval, w
dlt, dim);

for (subaxis = 0; subaxis < dim; subaxis++) {

axis = group + subaxis;

logi
al_to_world_pixel_size[axis℄ = p
dlt[subaxis℄ * w
dlt[subaxis ℄;

}

}

}

Note that in the FITS �le, the logi
al-to-world transform is stored in the CR-

PIX/CRVAL/CDELT keywords and the logi
al-to-physi
al transform is stored in the

C1RPX/C1RVL/C1DLT keywords. The data model
ombines these to return the physi
al-

to-world transform and the logi
al-to-physi
al, so you have to do a bit more work to get the

logi
al-to-world information.

To make an image with these,

har* pname = "SKY";

har* punit = "pixel";

33

4. Introdu
tion to the DataModel library routines 34

har* p
ptNames[℄ = "X", "Y";

long dim = 2;

double p
rpix[2℄ = { 128.0, 128.0 };

double p
rval[2℄ = { 256.0, 256.0 };

double p
delt[2℄ = { 2.0, 2.0 };

har* wname = "EQPOS";

har* wunit = "deg";

har* w
ptNames[2℄ = "RA", "DEC";

har* wtransform = "TAN";

double w
rpix[2℄ = { 256.0, 256.0 }; / * Identi
al with p
rval */

double w
rval[2℄ = { 271.3, -30.21 }; /* Corresponding RA and De
 */

double w
delt[2℄ = { -0.0032, 0.0032 };

/* Create linear logi
al-to-physi
al transform with initial value the identity transform */

phys[i℄ = dmArrayCreateAxisGroup(imageData, pname, punit, p
ptNames, dim);

/* Adjust value of transform parameters */

dmCoordSetTransform_d(phys[i℄, p
rpix, p
rval, p
delt, dim);

/* Create physi
al-to-world transform */

world[i℄ = dmCoordCreate_d(phys[i℄, wname, wunit, w
ptNames, dim, wtransform,

w
rpix, w
rval, w
delt, NULL);

An example of the use of the physi
al
oord system: suppose you want to �nd the o� axis

angle of a target pixel in a rebinned sky image, given that you know the mean aspe
t. In

the CXC analysis system, the rebinned sky image's physi
al
oords would be the sky pixel

oords. The de�nition of sky
oords is that the tangent point
orresponds to the nominal

pointing dire
tion; in the absen
e of aspe
t info that is a good �rst guess. If you have the

RA PNT, DEC PNT keywords that will give you the RA and De
 of the mean pointing.

We
an use CoordInvert to map these to physi
al
oords, and use CoordCal
 to map your

target logi
al pixel to physi
al
oords.

dmKeyRead_d(imageData, "RA_PNT", &optax_eq[0℄);

dmKeyRead_d(imageData, "DEC_PNT", &optax_eq[1℄);

dmCoordCal
_d(phys[0℄, target_pixel, target_phys);

dmCoordInvert_d(world[0℄, optax_eq, optax_phys);

distan
e_in_phys_pixels = root_add_squares(optax_phys[0℄-target_phys[0℄, optax_phys[1℄ - target_phys[1℄);

distan
e_in_ar
se
 = distan
e_in_phys_pixels * w
dlt[1℄ * 3600.0;

4.3.4 Coord properties

To get or alter the properties of a
oord des
riptor, use the generi
 des
riptor dmGet/dmSet

alls:

34

4. Introdu
tion to the DataModel library routines 35

� dmGetName, dmSetName - get/set name of
oord

� dmGetUnit, dmSetUnit - get/set unit of
oord

� dmGetDataType - get data type of
oord (
annot be
hanged)

� dmGetDes
, dmSetDes
 - get/set des
riptive
omment for
oord

� dmGetArrayDim - get array dimensionality for
oord (always 0)

� dmGetElementDim - get ve
tor dimension for
oord (
annot be
hanged)

� dmGetElementType - get element type of
oord (
annot be
hanged)

� dmGetDisp, dmSetDisp - get display format hint for
oord

(Some of these don't do anything useful yet in the
ase of
oordinates).

If the
oord is a ve
tor
oord, the dmGetCptName, dmSetCptName routines
an be

used to �nd or alter the name of ea
h ve
tor
omponent and dmGetElementDim
an be

used to �nd the number of
omponents. The
oord must have the same element dimension

as its parent des
riptor.

To get all the information for a des
riptor in a single
all, use the dmDes
riptorInfo
all.

To delete a
oord, use the dmDes
riptorDelete
all.

4.4 Header keys

4.4.1 Header keys

Header keys are treated as table
olumns with a single row; they are present in both tables

and images. You
an
reate a new header key as follows:

� Use dmKeyCreate to
reate a des
riptor for the key, and then use dmSetS
alar to

set its value.

� Use dmKeyWrite to
reate the des
riptor and write the value, unit and des
ription

at the same time. This is usually the most
onvenient.

� Use dmBlo
kMoveToKey, dmBlo
kMoveToKeyNo, and

dmBlo
kAdvan
eKeys to reposition yourself in the header so that you
an write

keys out of order.

35

4. Introdu
tion to the DataModel library routines 36

In later releases we will support array,
ompound element, and ve
tor header keys. These

may be written analogously:

� Use dmKeyCreateGeneri
 to
reate a des
riptor for a generi
 key, and use various

dmSet routines to set the values;

� or use dmKeyWriteVe
tor, dmKeyWriteArray, dmKeyWriteInterval to write

the values at the same time as
reating the des
riptor.

You should therefore be aware that in future key reads may need to take into a

ount the

element and array dimension of the keys.

To �nd the total number of keys in the blo
k, use dmBlo
kGetNoKeys.

To read a header key from a blo
k, you have the following
hoi
es:

� Use dmKeyOpen to sear
h for the key by name and return a des
riptor for it.

� Use dmBlo
kGetKey to return a des
riptor for a key given its number (order) in

the header. Keys are numbered starting at 1. To get all the keys in the blo
k, use

dmBlo
kGetKeyList.

� Use dmKeyRead to sear
h for the key by name, and return both a des
riptor

and the key's value, for
ed to a parti
ular data type. If no key of that name is

present, dmKeyRead returns a null des
riptor (and zero or blank in the value). Use

dmKeyReadVe
tor to read ve
tored or array keys.

� To read or write a s
alar key value when you already have its des
riptor, use the

dmGetS
alar/dmSetS
alar
alls. You
an use the dmGetArray/dmSetArray,

dmGetVe
tor/dmSetVe
tor, dmGetInterval/dmSetInterval for more
ompli-

ated kinds of key.

� To
ompare two header keys (typi
ally with the same name but from di�erent �les)

use dmDes
riptorCompare.

4.4.2 Key properties

To get or alter the properties of a key, use the generi
 des
riptor dmGet/dmSet
alls:

� dmGetName, dmSetName - get/set name of key

36

4. Introdu
tion to the DataModel library routines 37

� dmGetUnit, dmSetUnit - get/set unit of key

� dmGetDataType - get data type of key (
annot be
hanged)

� dmGetDes
, dmSetDes
 - get/set des
riptive
omment for key

� dmGetArrayDim - get array dimensionality for key (
annot be
hanged)

� dmGetElementDim - get ve
tor dimension for key (
annot be
hanged)

� dmGetElementType - get element type of key (
annot be
hanged)

� dmGetDisp, dmSetDisp - get display format hint for key

� dmKeyGetNo gets the number of the key in the header.

If the key has nonzero array dimensionality, the dmGetArrayDimensions and dmGe-

tArraySize routines may be used to �nd the shape of the array and the total number of

array elements per
ell.

If the key is a ve
tor key, the dmGetCptName, dmSetCptName routines
an be used

to �nd or alter the name of ea
h ve
tor
omponent and dmGetElementDim
an be used

to �nd the number of
omponents. For example, one might have a des
riptor whose name

is DETPOS, with 2
omponents DETX and DETY representing di�erent axes. This is in

ontrast to an array des
riptor whi
h might be say DETX(2), with 2 values from the same

axis. One may even have ve
tored array des
riptors but this is not supported for keys.

Ea
h des
riptor also has an element type and, possibly, an interval type. The element

types supported at release R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. The

dmRANGE and dmINTERVAL element types are understood to des
ribe
losed intervals.

Des
riptors also have an Interval Type whi
h allows you to spe
ify open or semi-open inter-

vals, but this will not be implemented (dmGetIntervalType) until at least R3.

To get all the information for a des
riptor in a single
all, use the dmDes
riptorInfo
all.

To delete a key, use the dmDes
riptorDelete
all.

4.4.3 Comments

FITS-style COMMENT and HISTORY header information is supported via the dmBlo
k-

WriteComment and dmBlo
kReadComment routines.

37

4. Introdu
tion to the DataModel library routines 38

4.5 Images

4.5.1 Opening an image

You
an open an existing image in the following ways:

� Open the next blo
k in a dataset with dmDatasetNextBlo
k

� Open a numbered blo
k in a dataset with dmDatasetMoveToBlo
k.

� Open a blo
k by name with dmBlo
kOpen

� Open a blo
k and a dataset at the same time using dmImageOpen

In ea
h of these
ases ex
ept for dmImageOpen you must
he
k that it is an image and

not a table, using dmDatasetGetBlo
kType, and
all dmBlo
kClose when you are

done with the blo
k. For dmImageOpen you are guaranteed that it is an image, and you

must
all dmImageClose when you are done, whi
h releases both the blo
k and the parent

dataset at the same time. On
e you have opened the image, if you want to a

ess the image

data or axis info (rather than just the header info) you have to get the des
riptor for that

image data using dmImageGetDataDes
riptor.

You
an delete the image entirely by using the dmBlo
kDelete
all.

To
reate an image, you �rst
reate the image dataset or blo
k using dmImageCreate or (if

the dataset exists) dmDatasetCreateImage. You may then name the axes using dmAr-

rayCreateAxisGroup or dmArrayCreateAxisGroups. dmImageGetDataDes
rip-

tor returns the newly
reated image data des
riptor on whi
h you
an use dmSetArray or

dmImageDataSetPixel to write the values.

4.5.2 Basi
 image properties

.

Images have a set of n axes (often n=2) ea
h of whi
h has a dimension (the length of the axis).

They also have a set of pixel values arranged in an n-dimensional array. dmImageGet-

DataDes
riptor returns a des
riptor for the image data. You
an then use dmGetArray

on this des
riptor to get the array of values, just as if the image was a
ell in a table. Alter-

natively, you
an use dmImageDataGetPixel to get the values one pixel at a time. Use

dmGetDataType on the image data des
riptor to �nd the data type of the pixel values.

38

4. Introdu
tion to the DataModel library routines 39

To �nd the dimensionality of the image, the dmGetArrayDimensions routine tells you

what and how long ea
h axis is.

� dmBlo
kGetName returns the name of the image.

� dmBlo
kGetDataset returns a pointer to the dataset of whi
h the image is a member.

� dmBlo
kGetNo returns the number of the blo
k in the dataset.

Example:

long* axes;

dmBlo
k* image = dmImageOpen("image.dat");

har name[MAXLEN℄;

dmBlo
kGetName(image,name,MAXLEN);

dmDes
riptor* data = dmImageGetDataDes
riptor(image);

dmDataType type = dmGetDataType(data);

naxes = dmGetArrayDimensions(data, &axes);

free(axes);

dmImageClose(image);

4.5.3 Image axes

� dmArrayCreateAxisGroup
reates a des
riptor for an axis. It names the axis and

reates a unit
oordinate transform from the pixel values to the des
riptor.

� dmArrayGetNoAxisGroups returns the number of axis groups on the image.

� dmArrayGetAxisGroup returns des
riptor for nth axis group.

� To �nd the physi
al
oordinates at a parti
ular pixel number in the image, use dm-

CoordCal
 with the axis group as argument.

� To �nd the pixel value
orresponding to parti
ular physi
al
oordinates, use dmCo-

ordInvert with the axis group as argument.

� To �nd the world
oordinates for the image, use dmDes
riptorGetCoord on the

axis group. This returns the physi
al to world transformation.

Example:

39

4. Introdu
tion to the DataModel library routines 40

long logi
al[2℄ = { 20, 20 };

double physi
al[2℄;

double world[2℄;

dmBlo
k* image = dmImageOpen("myimage.fits[1:100,500:600℄");

dmDes
riptor* imageData = dmImageGetDataDes
riptor(image);

long* axes;

long naxes = dmGetArrayDimensions(imageData, &axes);

long ngroups = dmArrayGetNoAxisGroups(imageData);

dmDes
riptor* group1 = dmArrayGetAxisGroup(imageData, 1);

long dim = dmGetElementDim(group1);

dmDes
riptor* world_w
s = dmDes
riptorGetCoord(group1);

dmCoordCal
_l(group1, logi
al, physi
al);

dmCoordCal
_d(world_w
s, physi
al, world);

free(axes);

4.5.4 Image data

� dmImageGetDataDes
riptor returns the image data des
riptor.

� To read the data from the array, use the dmGetArray
all.

� To write the data to the array, use dmSetArray.

� To read or write a re
tangular sub-array, use dmImageDataGetSubArray, dmIm-

ageDataSetSubArray.

� To read or write a single pixel, use dmImageDataGetPixel, dmImageDataSet-

Pixel.

� To interpolate in the image, use dmImageDataInterpolate.

4.5.5 Image properties

To get or alter the properties of a Image, use the generi
 des
riptor dmGet/dmSet
alls on

the image data des
riptor.

� dmGetName, dmSetName - get/set name of Image data quantity

� dmGetUnit, dmSetUnit - get/set unit of Image pixel values

� dmGetDataType - get data type of Image (
annot be
hanged)

40

4. Introdu
tion to the DataModel library routines 41

� dmGetDes
, dmSetDes
 - get/set des
riptive
omment for Image

� dmGetArrayDim - get array dimensionality for Image (
annot be
hanged)

� dmGetArrayDimensions - get shape of array (size of ea
h axis)

� dmGetArraySize - get total number of array elements per
ell.

� dmGetElementDim - get ve
tor dimension for Image pixels (
annot be
hanged,

usually 1)

� dmGetElementType - get element type of Image pixels (
annot be
hanged, usually

dmVALUE)

� dmGetDisp, dmSetDisp - get display format hint for Image pixel values

If the Image is a ve
tor Image (not supported until R3+), the dmGetCptName, dm-

SetCptName routines
an be used to �nd or alter the name of ea
h ve
tor
omponent and

dmGetElementDim
an be used to �nd the number of
omponents. Ea
h des
riptor also

has an element type and, possibly, an interval type. The element types supported at release

R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. However, images almost always

have an element type of dmVALUE.

To get all the information for a des
riptor in a single
all, use the dmDes
riptorInfo
all.

4.5.6 Image pixel lists

An alternate way of representing an image is as a list of pixels and their values. This is
on-

venient for sparse arrays, and is related to the event list representation. In a future release,

we will support su
h pixel lists. The dmImageDataGetPixlistSize routine returns the

number of nonzero pixels in the
ell. dmImageDataGetPixlist and dmImageDataSet-

Pixlist are used to read and write image data in the form of pixel lists. Note that in these

routines the pixel lists are the interfa
e to the data, but the a
tual storage of the data in

the �le is still the standard image format (whatever that is for the kernel in question).

4.6 Data Subspa
e

4.6.1 Subspa
e
olumns

We want to re
ord in the �le a des
ription of how the data has been �ltered. Although in

the underlying �le format this may be implemented using header keywords, we treat this

information spe
ially at the data model level.

41

4. Introdu
tion to the DataModel library routines 42

To store a �lter, use the dmSubspa
eColCreate routines. For example, in our earlier sample

ode we wrote two header keys des
riping the PHA range:

dmKeyWrite_l(out_table, "CHANMIN", 0, "
hannel", "Min PHA
hannel");

dmKeyWrite_l(out_table, "CHANMAX", MAXPHA, "
hannel", "Max PHA
hannel");

We might instead write

phamin = 0;

phamax = MAXPHA;

dmSubspa
eColCreate_l(out_table, "PHA", "
hannel", &phamin, &phamax, 1);

The di�eren
e is that the �le now intrinsi
ally knows that 0 and MAXPHA are the min and

max values that des
ripe the PHA variable. Similarly we might write

dmSubspa
eColCreate_d(out_table, "TIME", "s", start, stop, ngti);

The Subspa
eColCreate
ode will re
ognize TIME as a spe
ial
ase and store the array of

values in a separate GTI table. You
an also for
e data to be stored in a separate table

in FITS using Subspa
eColCreateTable; other kernels may do something di�erent, but it

should be analogous to whatever they do for GTIs.

To store a new �lter, use dmSubspa
eColCreate or dmSubspa
eCreateRegion.

To later alter its values, use dmSubspa
eColSet to overwrite old values or dmSub-

spa
eColUpdate to interse
t new values with old values.

To �nd an existing �lter, use dmSubspa
eColOpen and then read its values using dm-

Subspa
eColGet. These routines may be
ombined as dmSubspa
eColRead. For a

region �lter, use dmSubspa
eColOpen followed by dmSubspa
eGetRegion.

4.6.2 Subspa
e
olumn properties

To get or alter the properties of a subspa
e
olumn des
riptor, use the generi
 des
riptor

dmGet/dmSet
alls:

� dmGetName, dmSetName - get/set name of subspa
e des
riptor

� dmGetUnit, dmSetUnit - get/set unit of subspa
e des
riptor

42

4. Introdu
tion to the DataModel library routines 43

� dmGetDataType - get data type of subspa
e des
riptor (
annot be
hanged)

� dmGetDes
, dmSetDes
 - get/set des
riptive
omment for subspa
e des
riptor

� dmGetArrayDim - get array dimensionality for subspa
e des
riptor (
annot be

hanged)

� dmGetElementDim - get ve
tor dimension for subspa
e des
riptor (
annot be

hanged)

� dmGetElementType - get element type of subspa
e des
riptor (
annot be
hanged)

� dmGetDisp, dmSetDisp - get display format hint for subspa
e des
riptor

The subspa
e des
riptor usually has array dimensionality 1; dmGetArraySize routine may

be used to �nd the shape of the array and the total number of array elements per
ell.

The dmSubspa
eColSet routines are spe
ial in that they
an
hange the number of array

elements for the subspa
e.

If the subspa
e des
riptor is a ve
tor subspa
e des
riptor, the dmGetCptName, dm-

SetCptName routines
an be used to �nd or alter the name of ea
h ve
tor
omponent and

dmGetElementDim
an be used to �nd the number of
omponents. For example, one

might have a des
riptor whose name is DETPOS, with 2
omponents DETX and DETY

representing di�erent axes. This is in
ontrast to an array des
riptor whi
h might be say

DETX(2), with 2 values from the same axis. One may even have ve
tored array des
riptors

but this is not en
ouraged.

Ea
h des
riptor also has an element type and, possibly, an interval type. The element

types supported at release R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. The

dmRANGE and dmINTERVAL element types are understood to des
ribe
losed intervals.

Des
riptors also have an Interval Type whi
h allows you to spe
ify open or semi-open inter-

vals, but this will not be implemented (dmGetIntervalType) until at least R3.

To get all the information for a des
riptor in a single
all, use the dmDes
riptorInfo
all.

To delete a �lter des
riptor, use the dmDes
riptorDelete
all.

4.6.3 A

essing subspa
e
olumns

� dmBlo
kGetNoSubspa
eCols returns the total number of �lters.

� dmBlo
kGetNoSubspa
eCpts returns the number of separate
omponents in the

subspa
e (see the abstra
t design do
ument for details).

43

4. Introdu
tion to the DataModel library routines 44

� dmBlo
kGetSubspa
eColNo gets a �lter by number.

� dmBlo
kGetSubspa
e returns the full list of des
riptors for the �lters in the sub-

spa
e.

� dmBlo
kSetSubspa
eCpt sets the value of the subspa
e
omponent number, used

by dmSubspa
eColCreate et
.

� dmBlo
kGetCurrSubspa
eCpt returns the
urrent subspa
e
omponent, used by

dmSubspa
eColUpdate, et
.

� dmSubspa
eColGetTableName returns the name of any asso
iated table used by

the
olumn.

4.6.4 Subspa
e routines

These routines may a
tually parse the data subspa
e to apply �ltering
onstraints.

� dmBlo
kInterse
tSubspa
e
reates a new data subspa
e whi
h is the interse
tion

of two others.

� dmBlo
kMergeSubspa
e
reates a new subspa
e whi
h is the union (logi
al OR) of

two others.

� dmBlo
kPrintSubspa
e is a diagnosti
 routine to show the
urrent values in the

data subspa
e.

44

