
CXC-DM-008

CXC Data Model

Vol. 8

C Programmers' Guide

Chandra X-ray Center

Otober 22, 2001

2

Contents

Copyright, Dislaimer 5

Contributors and `Change Do Page' 6

Prefae 7

1 Introdution 7

1.1 Overview . 7

1.2 FITS and QPOE . 8

1.3 Basi onepts . 8

1.4 Virtual Files . 9

1.5 A simple example . 10

1.6 Online CXC DataModel Referenes . 15

2 Programming Considerations 15

2.1 Con�guration and Sample Code . 15

2.2 Struture Objets . 16

2.3 Memory Management . 17

2.4 De�ned Types . 17

2.5 dmDataType . 17

2.6 dmBlokType . 18

2.7 dmDesriptorType . 18

2.8 dmElementType . 19

3 Interfae Parameters 19

2

3

3.1 Kernel Mnemonis . 19

3.2 Kernel Options . 20

3.3 Internals . 20

3.4 Error Handling and Diagnostis . 20

3.5 Counting in the DataModel . 21

3.6 Initialization Routines . 21

3.7 Multithreading . 21

4 Introdution to the DataModel library routines 22

4.1 Dataset operations . 22

4.1.1 Opening and losing �les . 22

4.1.2 Navigating within a dataset . 23

4.1.3 Kernel related routines . 24

4.1.4 Auxiliary dataset routines . 24

4.2 Tables . 24

4.2.1 Opening a table . 24

4.2.2 Basi table properties . 25

4.2.3 Creating table struture . 25

4.2.4 Navigating in the table . 26

4.2.5 Cell-based I/O: introdution . 26

4.2.6 Column properties . 27

4.2.7 Cell-based I/O read and write . 28

4.2.8 Cell-based I/O: ompliated ases . 29

4.2.9 Column-based I/O . 29

4.2.10 Row-based I/O . 29

3

4

4.2.11 Preferred Axes . 30

4.3 Coordinate Desriptors . 31

4.3.1 Coordinates . 31

4.3.2 Coord values . 31

4.3.3 Physial and world oordinate systems . 32

4.3.4 Coord properties . 34

4.4 Header keys . 35

4.4.1 Header keys . 35

4.4.2 Key properties . 36

4.4.3 Comments . 37

4.5 Images . 38

4.5.1 Opening an image . 38

4.5.2 Basi image properties . 38

4.5.3 Image axes . 39

4.5.4 Image data . 40

4.5.5 Image properties . 40

4.5.6 Image pixel lists . 41

4.6 Data Subspae . 41

4.6.1 Subspae olumns . 41

4.6.2 Subspae olumn properties . 42

4.6.3 Aessing subspae olumns . 43

4.6.4 Subspae routines . 44

4

Copyright, Dislaimer 5

Copyright, Aknowledgement, Dislaimer

The software desribed in this doument is freely distributed under the following opyright:

/***/

/* */

/* Copyright () 1999 Smithsonian Astrophysial Observatory */

/* */

/* Permission to use, opy, modify, distribute, and sell this */

/* software and its doumentation for any purpose is hereby */

/* granted without fee, provided that the above opyright */

/* notie appear in all opies and that both that opyright */

/* notie and this permission notie appear in supporting dou- */

/* mentation, and that the name of the Smithsonian Astro- */

/* physial Observatory not be used in advertising or publiity */

/* pertaining to distribution of the software without speifi, */

/* written prior permission. The Smithsonian Astrophysial */

/* Observatory makes no representations about the suitability */

/* of this software for any purpose. It is provided "as is" */

/* without express or implied warranty. */

/* THE SMITHSONIAN ASTROPHYSICAL OBSERVATORY DISCLAIMS ALL */

/* WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL */

/* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO */

/* EVENT SHALL THE SMITHSONIAN ASTROPHYSICAL OBSERVATORY BE */

/* LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES */

/* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA */

/* OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR */

/* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH */

/* THE USE OR PERFORMANCE OF THIS SOFTWARE. */

/* */

/**/

Published papers making use of CXC software should inlude the following aknowledgement:

This work has made use of software provided by the Chandra X-ray Center, operated

by a grant the Smithsonian Astrophysial Observatory by the National Aeronautis

and Spae Administration.

5

Contributors 6

Contributors and `Change Do' Page

Jonathan MDowell, Mihael S. Noble, Kenny Glotfelty, Oliver Oberdorf, Sott Randall

WWW: http://handra.harvard.edu/

6

Prefae 7

Prefae

This Guide desribes the SAO/CXC data model software, whih allows the user to manip-

ulate data by �ltering and binning it. The CXCDM (CXC Data Model) library is used

throughout the CXC software to read and write data �les, and �lters those data �les using a

speial `virtual �le' syntax whih quali�es the input �lename. This means that users an use

any of the CXC tools to �lter their data on the y, whenever an input �lename is prompted

for. The CXCDM also omes with some basi tools for simple data manipulation. See the

Data Manipulation User's Guide for a desription of the virtual �le syntax and use of the

tools. The present doument is intended for programmers who want to write their own ode

using the CXCDM .

The CXCDM was developed by a team at the Chandra X-ray Center (CXC, formerly

ASC), at the Smithsonian Astrophysial Observatory, Cambridge, Massahusetts, USA. CX-

CDM will be an integrated part of the CXC Data Analysis System, and is being distributed

by the CXC as part of the ight software release in spring 1999 ready for the launh of

Chandra in mid-1999.

1 Introdution

1.1 Overview

The DataModel is an I/O subroutine library whih

� Gives aess to di�erent �le formats

� Provides a high level, ommon abstration of those formats

� Allows the appliation program to transparently aess a �ltered view of the underlying

�le, e.g. seleting rows and olumns of tables.

7

1. Introdution 8

1.2 FITS and QPOE

The DataModel gives you an abstrat view of astronomial data �les and provides data

I/O transparently to FITS, QPOE and IMH format �les. Instead of using format-spei�

alls that involve onepts spei� to those formats (like the BITPIX variable in FITS �les),

we provide a uniform interfae whih deals in terms of a more abstrat desription - the

"Data Model". The lower layers of the library whih deal with spei� formats are alled

"kernels". The two �le kernels urrently supported by the DataModel arhiteture are the

FITS kernel and the IRAF kernel. The FITS kernel provides I/O to FITS �les (inluding

images, and binary and ASCII tables, but with some limitiations, partiularly for ASCII

tables and variable-length array olumns in binary tables). Eah FITS kernel `dataset' is a

single FITS �le. The IRAF kernel handles IMH image �les and QPOE table/event list �les.

By default it urrently treats a whole diretory as the `dataset', but individual �les an also

be datasets. The use of diretories as datasets is now depreated.

1.3 Basi onepts

The DataModel treats data as a hierarhy of datasets, bloks and desriptors. Loosely,

datasets represent �les, bloks represent tables and images (inluding their header informa-

tion), and desriptors represent individual olumns, header keywords, oordinate systems,

and other named objets within a blok. For instane, a table olumn has a desriptor,

sine it has a name, but a table row has neither a name nor a desriptor. The uni�ed `de-

sriptor' onept helps us do useful, exible things like treating header keywords as table

olumns whose value is the same in eah row. Desriptors have other assoiated desriptive

information (hene the name), suh as units, omments, and data type.

� A dataset is an ordered set of bloks.

� A blok onsists of header, data, and a data subspae whih desribes the range

of appliability of the data (spei�ally, how the data has been �ltered).

� Eah blok onsists of a set of olumns; eah olumn in the blok has the same

non-negative number of rows.

� In eah row, the olumn ontains a ell whih is an n-dimensional array of elements

(but usually this n-dimensional array is a single element, i.e. n = 0).

� Elements are vetors of values (but usually just one value). For example, an (X,Y)

position pair is a 2-dimensional vetor. In the DataModel, we distinguish between

vetors like (X,Y,Z) (di�erent quantities grouped together) and arrays like X[10℄

(several values of the same quantity), so that you an in the worst ase have a vetor

8

1. Introdution 9

array like (X,Y,Z)[10℄. In most ases, though, data is salar, i.e. neither vetorized

nor arrayed.

� A value an be numeri, string, or one of the other supported data types desribed

below.

� An image blok has one row and one olumn, ontaining a single N-dimensional ell of

values.

There are several avors of desriptor:

key desriptor whih orresponds to a DataModel header key. In the DataModel, ker-

nel header keys whih desribe the struture of the �le are not visible through the

DataModel interfae. For instane, a FITS TUNITn keyword whih desribes the unit

for a table olumn doesn't ount as a DataModel header key - instead, you ontrol

it through altering the properties of that table olumn. This lets you onentrate on

just the `extra' header keys whih ontain sienti� rather than strutural information;

these are the DataModel header keys.

olumn desriptor whih orresponds to a table olumn. Sine images are onsidered to

be a trivial table, there is also a single `image data desriptor' for eah image blok.

This is urrently a separate type of desriptor, but the distintion will soon be phased

out. Some olumns are `vetor olumns' with multiple omponent olumns, like 2-

dimensional positions.

subspae desriptor whih orresponds to �ltering information on the blok. Eah quan-

tity that the blok has been �ltered on has a orresponding desriptor. Sometimes

there is an assoiated olumn desriptor too - maybe TIME is a olumn and you've

also �ltered on TIME - and sometimes not: maybe you �ltered on PHA but then got

rid of that olumn, so only the �lter information is left.

oord desriptor whih represents a `pseudo-olumn' de�ned as a funtion of another ol-

umn. Currently we use these to implement support for WCS (World Coordinate Sys-

tem) information. A speial ase, the physial oordinates along the axes of an image,

are alled axis group desriptors.

1.4 Virtual Files

When you open a DataModel blok to read it, you pass the subroutine (e.g. dmTableOpen)

a string alled a `virtual �le spei�ation' or `vspe', rather than simply a �le and table

name. The blok desriptor that is returned refers to that virtual �le, and all I/O is done in

terms of the �ltered view desribed by it. For instane,

9

1. Introdution 10

table = dmTableOpen("bas.fits[stdevt℄[pha=20:30℄");

opens a virtual �le whih onsists of only those rows in table `stdevt' of �le `bas.�ts' whih

have values of the PHA olumn lying between 20 and 30. Unlike some virtual �le implemen-

tations, DataModel �ltering does not read in the entire �ltered �le at open time, although

some bu�ering is done as you read through the �le. This means there's no limitation on the

size of �le you an read, but it's ineÆient to randomly aess rows of a �ltered �le (e.g.

going to row number 42 may require the �le to be �ltered again).

In ontrast, DataModel binning, e.g.

image = dmImageOpen("bas.fits[stdevt℄[bin x=32,y=32℄");

does reate the entire binned image in memory the �rst time you try and read from the data

setion of the virtual �le. Binning may fail if insuÆient memory is available. (We plan to

add ode to get around this by rebinning on subsetions, but that will be an `after launh'

addition). However, you an aess the header and struture of an arbitrarily large binned

image without triggering the binning - it's only when you read image pixels that binning

ours.

1.5 A simple example

Here is a simple example of ode whih reads two tables and writes a third. In the GTI

table, we open olumn desriptors by expliit olumn numbers sine we know that di�erent

implementations of GTI tables use a variety of names for the olumns but the data is always

in olumns 1 and 2. We use the GetSalars ommand to read eah olumn at one gulp, sine

we know the GTI is probably small and we won't take muh of a bu�ering hit. In the event

table, we open olumn desriptors by name, allowing the possibility that the order of the

olumns may be moved around. Sine the number of rows may be large, we read the data

row by row to avoid FITSIO bu�ering problems.

The header key read returns a desriptor, whih we an use to �nd out the key's unit or other

properties, but most often we use it just to test that it is non-null, i.e. that the keyword is

present.

Error heking is omitted from the ode below for brevity, as are omments sine the ode

is desribed above in the text.

#inlude "asdm.h"

10

1. Introdution 11

#inlude <stdlib.h>

#inlude <stdio.h>

#define MAXPHA 256

int main(int nargs, har* args[℄)

{

dmDataset* input_ds;

dmDataset* output_ds;

dmBlok* gti_table;

dmBlok* event_table;

dmBlok* out_table;

dmDesriptor *start_ol, *stop_ol, *pha_ol;

dmDesriptor *status_ol;

dmDesriptor *hannel, *ounts, *rate;

double* start;

double* stop;

double livetime, tzero;

long spetrum[MAXPHA+1℄;

long pha, itzero, i, ngti, n, row;

short status;

for(i = 0; i < MAXPHA; i++)

spetrum[i℄ = 0;

input_ds = dmDatasetOpen("bas.fits");

gti_table = dmBlokOpen(input_ds, "STDGTI");

start_ol = dmTableOpenColumnNo(gti_table,1);

stop_ol = dmTableOpenColumnNo(gti_table,2);

ngti = dmTableGetNoRows(gti_table);

start = (double*)mallo(ngti*sizeof(double));

stop = (double*)mallo(ngti*sizeof(double));

dmGetSalars_d(start_ol, start, 1, ngti);

dmGetSalars_d(stop_ol, stop, 1, ngti);

dmBlokClose(gti_table);

livetime = 0.0; for (i= 0;i<ngti;i++) { livetime += stop[i℄ - start[i℄; }

event_table=dmBlokOpen(input_ds, "STDEVT");

11

1. Introdution 12

/* Look for any of various MJDREF keywords */

if(dmKeyRead_l(event_table, "MJDREFI", &itzero))

{

(void)dmKeyRead_d(event_table, "MJDREFF", &tzero);

tzero += itzero;

}

else if(!dmKeyRead_d(event_table, "MJDREF", &tzero))

if (dmKeyRead_l(event_table, "XS-MJDRD", &itzero))

{

(void)dmKeyRead_d(event_table, "XS-MJDRF", &tzero);

tzero += itzero;

}

else

{

tzero = 0.0;

printf("No MJDREF keyword found\n");

}

n = dmTableGetNoRows(event_table);

pha_ol = dmTableOpenColumn(event_table, "PHA");

status_ol=dmTableOpenColumn(event_table, "STATUS");

for (row = 0; row < n; row++)

{

pha = dmGetSalar_l(pha_ol);

status = dmGetSalar_s(status_ol);

if (status == 0) spetrum[pha℄++;

dmTableNextRow(event_table);

}

dmBlokClose(event_table);

dmDatasetClose(input_ds);

free(start);

free(stop);

output_ds = dmDatasetCreate("spetrum.fits");

out_table = dmDatasetCreateTable(output_ds, "TABLE");

hannel = dmColumnCreate(out_table,"CHANNEL",dmLONG,0,"hannel","Pulse height hannel");

ounts = dmColumnCreate(out_table,"COUNTS",dmLONG,0,"ount","Spetrum ounts");

rate = dmColumnCreate(out_table,"RATE",dmDOUBLE,0,"ount/s","Count rate");

dmKeyWrite_d(out_table, "EXPOSURE", livetime, "s", "Livetime");

dmKeyWrite_l(out_table, "CHANMIN", 0, "hannel", "Min PHA hannel");

dmKeyWrite_l(out_table, "CHANMAX", MAXPHA, "hannel", "Max PHA hannel");

12

1. Introdution 13

dmKeyWrite_(out_table, "CHANTYPE", "PHA", " ", "PH binning type");

for (pha = 0; pha <= MAXPHA; pha++)

{

dmSetSalar_l(hannel, pha);

dmSetSalar_l(ounts, spetrum[pha℄);

dmSetSalar_d(rate, spetrum[pha℄/livetime);

dmTablePutRow(out_table,NULL);

}

dmBlokClose(out_table);

dmDatasetClose(output_ds);

return 0;

}

The same program an be written using expliit row data bu�ers and one-blok-at-a-time

dataset handling (some details omitted where the same as the previous version). The one-

blok-at-a-time dmTableCreate/dmImageCreate and dmTableOpen/dmImageOpen routines

are a onveniene for the speial ase of a dataset with one blok in it, whih is very ommon.

It minimizes the number of handles oating around in the program. The row bu�ers have

the advantage of simpliity, but the huge disadvantage that the ode is no longer robust to

hanges in data type and olumn order in the input �le. Therefore, it should be used with

aution in prodution ode intended for wide use.

dmBlok* gti_table;

dmBlok* event_table;

dmBlok* out_table;

dmDesriptor *hannel, *ounts, *rate;

double livetime;

long spetrum[MAXPHA+1℄;

long pha;

double tzero;

strut { double start; double stop; } gti;

strut { long pha; short status; } event;

strut { long hannel; long ounts; double rate; } row;

gti_table = dmTableOpen("bas.fits[STDGTI℄[ols START,STOP℄");

livetime = 0.0;

while(dmTableGetRow(gti_table,>i) != dmNOMOREROWS)

livetime += gti.stop - gti.start;

13

1. Introdution 14

dmTableClose(gti_table);

event_table=dmTableOpen("bas.fits[STDEVT℄[olumns PHA,STATUS℄");

dmKeyRead_d(event_table,"MJDREF",&tzero);

while(dmTableGetRow(event_table, &event) != dmNOMOREROWS)

if (event.status == 0) spetrum[event.pha℄++;

dmTableClose(event_table);

out_table = dmTableCreate("spetrum.fits[SPECTRUM℄");

hannel = dmColumnCreate(out_table,"CHANNEL",dmLONG,0,"hannel","Pulse height hannel");

ounts = dmColumnCreate(out_table,"COUNTS",dmLONG,0,"ount","Spetrum ounts");

rate = dmColumnCreate(out_table,"RATE",dmDOUBLE,0,"ount/s","Count rate");

dmKeyWrite_d(out_table, "EXPOSURE",livetime, "s", "Livetime");

dmKeyWrite_l(out_table, "CHANMIN", 0, "hannel", "Min PHA hannel");

dmKeyWrite_l(out_table, "CHANMAX", MAXPHA, "hannel", "Max PHA hannel");

dmKeyWrite_(out_table, "CHANTYPE","PHA", " ","PH binning type");

for (pha = 0; pha < MAXPHA; pha++)

{

row.hannel= pha;

row.ounts = spetrum[pha℄;

row.rate = spetrum[pha℄/livetime;

dmTablePutRow(out_table, &row);

}

dmTableClose(out_table);

Better yet, you an also rewrite the �rst part of the ode as follows:

dmBlok* event_table;

double livetime;

double* start;

double* stop;

long spetrum[MAXPHA+1℄;

long ngti;

strut { long pha; short status; } event;

14

2. Programming Considerations 15

event_table=dmTableOpen("bas.fits[STDEVT℄[ols PHA,STATUS℄");

dmKeyRead_d(event_table, "MJDREF", &tzero);

dmSubspaeColGet_d(dmSubspaeColOpen(event_table, "TIME"),

&start, &stop, &ngti);

livetime = 0.0;

for (i= 0;i<ngti;i++) { livetime += stop[i℄ - start[i℄; }

while(dmTableGetRow(event_table, &event) != dmNOMOREROWS)

if (event.status == 0) spetrum[event.pha℄++;

dmTableClose(event_table);

In this version, we don't ever see the GTI table expliitly. At the sienti� level, GTI is just

the �lter on the time attribute, you don't are that in a FITS �le it's stored in a separate

extension. In fat, in a QPOE �le the GTIs are not stored in a separate table. So it's

important to provide this level of abstration if you want the program to work on either

QPOE or FITS �les.

1.6 Online CXC DataModel Referenes

This doument is kept online at http://fa-www.harvard.edu/ jm/as/asdm. At the mo-

ment the DataModel is available only for internal Chandra X-ray Center use. The soure

will be made available via FTP and WWW at the time of a general release. Email the

DataModel alias (asdm�fa.harvard.edu) or or Jonathan MDowell (jm�fa.harvard.edu)

for further information, or to obtain the soure ode prior to the general release.

2 Programming Considerations

2.1 Con�guration and Sample Code

A on�gure sript lets you inlude or exlude spei� kernels and on�gure the library for a

partiular platform.

The do diretory in the DataModel distribution ontains additional notes on installation,

on�guration, and use of the DataModel, as well as HTTP referenes to other astronomial

software upon whih the DataModel is layered.

15

2. Programming Considerations 16

The examples diretory ontains several programs and make�les that an be used both as a

test of the installation/on�guration and as sample ode.

In brief, the primary requirements for building an CXC DataModel program are:

- ensure #inlude "asdm.h" appears in your soure

- ensure your makefiles referene the Makevars.asdm present in

the root of the DataModel distribution tree

- ensure your ompilation and link rules referene the appropriate

DataModel maros speified within Makevars.asdm.

DataModel programs link to the following libraries:

� libasdm.a, the main DataModel library

� libws.a, Doug Mink's oordinate transformation library

� libregion.a, the DataModel Region library for 2D region �ltering.

� lib�tsio.a, Bill Pene's CFITSIO library (if the FITS kernel is enabled)

� libirafm.a, the CXC repakaging of the IRAF libraries (if the IRAF kernel is enabled)

� On some systems, libl.a and liby.a (the LEX and YACC libraries, or their FLEX and

BISON equivalents) may need to be expliitly linked, as well as the libm.a C math

library.

2.2 Struture Objets

In support of the logial abstrations provided by the CXC DataModel, three objet types

are de�ned. Instanes of these strutures should be reated and modi�ed only through use of

the aess routines spei�ed in this doument. Diret aess of the data struture internals

may jeopardize the integrity of your appliation and data, and hene should be avoided.

� dmDataset*: pointer to a DataModel dataset

� dmBlok*: pointer to a DataModel datablok (ie, table or image)

� dmDesriptor*: pointer to a DataModel data desriptor

16

2. Programming Considerations 17

2.3 Memory Management

To a large extent the CXC DataModel does not require the user to worry about details

of memory management. For example, it is not neessary to free memory assoiated with

individual dmDesriptor, dmBlok, or dmDataset pointers. Memory alloated to bloks and

the desriptors they may ontain will be freed when blok is losed via an appropriate routine

all. Similarly, memory alloated to dmDataset pointers will be freed when the dataset is

properly losed. To summarize, you should remember to lose bloks and datasets, but you

never need to expliitly lose a desriptor.

Another example onerns routines that return harater strings. Rather than have them

return har* arrays, these routines instead mostly write into a pre-alloated har* parameter,

up to a spei�ed maximum length parameter value (e.g., dmBlokGetName).

This maximum length does not inlude the C null termination, but the DM will enfore null

termination of returned strings. Thus, in the all

dmGetSalar_(dd, value, maxlen)

the variable "value" must be delared har[maxlen+1℄, and the memory loation

value[maxlen℄ may be set to zero.

Despite these attempts, there are still instanes when the DM user will need to expliitly

deal with memory management. For example, array memory alloated by routines that

return array pointers (e.g., dmTableOpenColumnList, dmBlokGetKeyList, or dmGetAr-

rayDimensions) will need to be expliitly freed. In these ases, though, ONLY the array

memory need be freed, not the individual array elements. Further details an be found in

the aompanying funtion desriptions and ode samples.

2.4 De�ned Types

The DataModel de�ned types have integral values with symboli names as listed.

2.5 dmDataType

Eah dmDataType orresponds to either a C built-in type or DataModel typedef.

17

2. Programming Considerations 18

dmDataType String Meaning Data/Class Type

dmSHORT S 2 byte integer dmshort, short

dmLONG L 4 byte integer dmlong, long

dmFLOAT F 4 byte IEEE real dmreal, oat

dmDOUBLE D 8 byte IEEE real dmdouble, double

dmTEXT C String dmString

dmBLOCKREF BR String, referene to blok typedef blokref dmString

dmBOOL Q Logial typedef dmlogial int

dmBYTE UB 1 byte unsigned dmbyte, unsigned har

dmUSHORT US 2 byte unsigned dmushort, unsigned short

dmULONG UI 4 byte unsigned dmulong, unsigned long

dmBIT BIT bit string bit array

The dmSHORT lass is a mahine-dependent #de�ne to a 2 byte integer type; on many

mahines short will be equivalent. Same goes for other types. The logial and blokref types

are typdef'd not #de�ned to make sure they are ompiler-distint from integer and string.

Other types may be added later. The blokref type is intended for use as a speial `URL/�le

referene' type, but we haven't fully implemented it yet.

2.6 dmBlokType

The dmBlokType desribes whether a blok is a table, image, or something else.

dmBlokType String

dmTABLE TABLE

dmIMAGE IMAGE

dmUNKNOWNBLOCK UNKNOWN

2.7 dmDesriptorType

dmDesriptorType String

dmCOLUMN for olumnar table data aess

dmKEY for header keyword aess

dmIMAGEDATA for aess to image data (depreated)

dmCOORD for oordinate transform desriptors

dmSUBSPACE for data subspae desriptors

dmUNKNOWNDESCRIPTOR for unknown desriptors

18

3. Interfae Parameters 19

Speial ases: a speial type of dmCOORD is an image axis; a speial type of dmCOLUMN

is a salar olumn desriptor whih is really one omponent of a vetor olumn.

2.8 dmElementType

The DataModel onsiders tabular olumn and image data in terms of "ells," the interse-

tion of a row and olumn, eah of whih ontain one or more "elements," eah of whih in

turn represent data in terms of the fundamental dmDataTypes. Cells an either be salar,

1-dimensional arrays, or N-dimensional arrays, with onstituent element types of:

dmElementType String Meaning

dmVALUE V Value (value)

dmRANGE R Range (min,max)

dmINTERVAL I Interval (value,min,max)

Note that elements an be multidimensional. For example, onsider a ell ontaining ele-

ments representing points in Cartesian 3D spae. Eah (x,y,z) triple would be a dmValue

element of dimensionality 3. Note that sine ell dimensionality is independent of element

dimensionality, it would still be possible to de�ne the ell in question here as a salar ell -

meaning eah ell would ontain only 1 (x,y,z) triple.

3 Interfae Parameters

3.1 Kernel Mnemonis

The DM kernel mnemonis provide an enapsulated way of referening the the ETOOLS

kernel urrently being used for I/O on a given dataset. Note that multiple datasets may be

opened during the exeution lifetime of a DM appliation, with a potentially distint kernel

used for I/O on eah.

Kernel Mnemoni Value Desription

dmFITSKERNEL "FITS" interfae to CFITSIO

dmIRAFKERNEL "IRAF" interfae to native IRAF

19

3. Interfae Parameters 20

3.2 Kernel Options

The kernel options, invoked with dmKernelSetOption, allow you to �ne-tune the behaviour

of the kernels outside of the DataModel paradigm. For instane, the DM doesn't know the

di�erene between FITS BINTABLE and FITS ASCII Table representations, so we have to

ontrol them by the `bak door'. The TABLE=STSDAS and COL=VARARRAY options

are not yet supported.

Kernel Option E�et

'TABLE=BINTABLE' Write tables in BINTABLE format if kernel is FITS

'TABLE=ASCII' Write tables in ASCII table format if kernel is FITS

'COL=VARARRAY' Next reated array ol is a variable array, if kernel is FITS

'TABLE=QPEVT' Write tables in QPOE event format if kernel is IRAF

'TABLE=STSDAS' Write tables in STSDAS format if kernel is IRAF

3.3 Internals

The DM internal parameters are used by the dmSetInternals routine.

Internal Parameter Value E�et

dmTABLEBUFFERSIZE "bu�ersize" Tune the size of the internal DM table bu�er. Note that you must

not set the bu�er size smaller than the largest number of rows

that your program will read in any single table I/O all. Setting this

parameter to a low number an redue the amount of memory your program

onsumes, or onversely, setting it higher may inrease eÆieny by

ensuring that large tables are handled by larger bu�ers.

3.4 Error Handling and Diagnostis

Most of the CXC DataModel routines indiate ompletion status either by returning an "int"

status ode or by returning unusual values (e.g., NULL pointers or negative row numbers).

The #de�ne symbol "dmErrCode", equivalent to "int", is also provided for use with the

return status odes. Regardless of whether or not a DataModel API funtion provides

expliit error state indiation, the all ompletion status an be determined by using the

dmGetError and dmGetErrorMessage routines.

The dmFAILURE status ode indiates some error ondition exists, while dmSUCCESS

indiates the all ompleted suessfully. Other status odes and return values are listed

as appropriate with the assoiated APi funtions. The numeri values may hange in the

20

3. Interfae Parameters 21

future, and we are onsidering various shemes suh as using negative values to indiate a

non-fatal error or warning.

Use dmGetVersion to �nd the urrent DataModel release version. This may be needed if

you send email to the CXC about possible bugs.

In later releases, we hope to provide dmDatasetPrintKernel and dmBlokPrintKernel

to inspet the ontents of the �le at the kernel level, bypassing the layer of interpretation

imposed by the DataModel. Use dmBlokGetNoKernelKeys and dmBlokGetKer-

nelKey to inspet header entries at the kernel level. Until these routines exist, you should

use the appropriate native tools (FTOOLS fdump, PROS qplist) to get a kernel-level view

of the �les.

3.5 Counting in the DataModel

The CXC DataModel uses a ones-based ounting system onsistently. That is, the smallest

blok number, key number, image pixel oordinate, olumn number, or row number will

ALWAYS be 1. In partiular, note that FTOOLS ounts FITS HDUs from zero, while we

ount from 1.

3.6 Initialization Routines

It is not neessary within DataModel programs to expliitly all the IRAF initialization

routine(s) when linking against the IRAF/QPOE kernel, as the neessary IRAF initializa-

tion(s) will be performed internally by the DataModel. In fat, sine one of the goals of the

DataModel is to free the user from �le-format spei�s, the use of any expliit �le-format

spei� funtionality is disouraged.

Users wishing to expliitly perform initialization at some well-de�ned point within their

appliation may use the dmInit routine.

3.7 Multithreading

At the time of this writing the CXC DataModel is NOT thread-safe. The deision to im-

plement the DataModel in this manner was primarily due to the fat that the DataModel

library is layered on other astronomial software libraries, most of whih are themselves NOT

thread-safe.

21

4. Introdution to the DataModel library routines 22

4 Introdution to the DataModel library routines

Although there are a large number of routines in the library, they an be grouped fairly

simply. Many routines are used in multiple ontexts; for instane, the same routine may

be used to read data from a table or an image. This setion organizes the routines by

usage, briey desribing the routines to use in eah ontext - for instane, table routines

are grouped together in one subsetion, and the same routine may be referred to in several

subsetions. However, the details of the routine are not given here, but in the �nal setion

of the doument where all the routines are desribed in alphabetial order.

4.1 Dataset operations

We �rst desribe operations at the dataset level. Reall that eah dataset ontains a series

of table bloks and/or image bloks.

4.1.1 Opening and losing �les

To open an existing dataset, use either the dmDatasetOpen routine or (if you are only

interested in one table or image in the dataset) the dmTableOpen/dmImageOpen routines.

The former returns a pointer of type dmDataset*, and you an then use that pointer to open

various bloks (tables or images) in the dataset using dmBlokOpen. The latter diretly

returns a pointer of type dmBlok*. Eah of the Open routines has a orresponding Close

routine and a orresponding Create routine for opening a new objet to write to. We also

provide a parallel set of OpenUpdate routines to let you aess �les read-write.

Table 1: Open/lose routines

dmDatasetOpen Open dataset by name, return dmDataset*

dmDatasetOpenUpdate Open dataset by name, read-write, return dmDataset*

dmDatasetCreate Same for reation

dmDatasetClose Close a dataset.

dmBlokOpen Open blok (table/image) in dataset, return dmBlok*

dmBlokCreate Same for reation, don't use for images

dmDatasetCreateTable Blok reate for table

dmDatasetCreateImage Blok reate for image, speify size

dmBlokClose Close blok opened by dmBlokOpen/Create

dmTableOpen Open table and dataset at same time, return dmBlok*

22

4. Introdution to the DataModel library routines 23

dmTableOpenUpdate Open table and dataset at same time, read-write, return dmBlok*

dmTableCreate Same for reation

dmTableClose Close dataset opened by dmDatasetTableOpen/Create

dmImageOpen Open image and dataset at same time, return dmBlok*

dmImageOpenUpdate Open image and dataset at same time, read-write, return dmBlok*

dmImageCreate Same for reation

dmImageClose Close image

If you open a dataset using the dmTable or dmImage routines, you only have a blok pointer.

If you then need the dataset pointer you an get it with the dmBlokGetDataset routine.

Another routine to reate bloks is the dmBlokCreateCopy routine, whih opies the

struture of an existing blok without its data.

4.1.2 Navigating within a dataset

Most of the time we work with a single blok within the dataset. If you have an open dataset,

and want to hange to a di�erent blok within the dataset, how do you get there? There are

several ways. You may aess the bloks sequentially, or by number, or by name.

To aess the bloks sequentially, use the dmDatasetNextBlok routine. This routine will

open the next blok, (the �rst time, it will open the �rst blok in the dataset), and repeated

alls will go through all the bloks until the end of the dataset, when it will return null.

The dmDatasetGetCurrentBlokNo inquiry routine returns the number of the most

reent blok to have been opened. The dmDatasetAdvaneBloks routine moves ahead

or bak by a spei�ed number of bloks, so dmDatasetNextBlok is equivalent to alling

dmDatasetAdvaneBloks with an argument of 1.

To aess the bloks by number, use dmDatasetMoveToBlok. dmDatasetGetBlok-

Name lets you hek the name of a numbered blok before opening it. The name of the

dataset itself is available via dmDatasetGetName.

The dmDatasetGetNoBloks inquiry routine returns the total number of bloks in the

�le.

The dmDatasetGetBlokType routine is used to �nd out whether the blok you are about

to open is a TABLE or an IMAGE. If you have opened the blok (i.e. you have a dmBlok*

pointer) you an use the dmBlokGetType or dmBlokGetTypeStr routines to �nd out

what kind of blok you have.

23

4. Introdution to the DataModel library routines 24

4.1.3 Kernel related routines

The following routines allow ontrol over whih kernel is used to make new �les. In normal

use we want the existene of di�erent kernels to be invisible to the programmer, so we

separate these alls out instead of making the kernel id an argument to CreateDataset as in

the EDS layer.

Use dmKernelSetCreate to speify the kernel to be used when reating new datasets from

srath. Use dmKernelSetCopy to speify the kernel to be used when making a opy from

an existing dataset (usually its kernel is opied too).

Use dmKernelGetCreate and dmKernelGetCopy to inspet the urrent settings.

dmKernelGetList tells you what kernels are available at run-time.

dmDatasetGetKernel is used to �nd out whih ETOOLS kernel (i.e. whih underlying

disk format) is being used for a partiular dataset.

4.1.4 Auxiliary dataset routines

There are some auxiliary routines whih are used less often to manipulate datasets.

� dmFileExists is used to test existene of a �le.

� dmDatasetAess is used to test whether a dataset exists, prior to opening it. It

atually opens the dataset, and is more general than dmFileExists sine it handles the

ase where a dataset onsists of multiple �les, but will fail if the �le is orrupted.

� dmDatasetDestroy deletes a dataset on disk by name.

� dmDatasetDelete deletes a dataset on disk whih is already open; often it's more

robust to use dmDatasetDestroy instead.

4.2 Tables

4.2.1 Opening a table

You an open an existing table in the following ways:

� Open the next blok in a dataset with dmDatasetNextBlok.

24

4. Introdution to the DataModel library routines 25

� Open a numbered blok in a dataset with dmDatasetMoveToBlok.

� Open a blok by name with dmBlokOpen.

� Open a blok and a dataset at the same time using dmTableOpen.

� Open a table for row-based I/O using dmTableOpenSelet (see Row Based I/O

below).

In eah of these ases exept for dmTableOpen you must hek that it is a table and not an

image, using dmDatasetGetBlokType or dmBlokGetType, and all dmBlokClose

when you are done with the blok. For dmTableOpen you are guaranteed that it is a table,

and you must all dmTableClose when you are done, whih releases both the blok and

the parent dataset at the same time.

You an delete the table entirely by using the dmBlokDelete all.

You an reate a new table and dataset using dmTableCreate. To reate a dataset

with multiple tables and/or images, use dmDatasetCreate to make the dataset and dm-

DatasetCreateTable,dmDatasetCreateImage to reate new tables and/or images. For

�ne ontrol, use dmKernelSetOption �rst, to ontrol details of the disk format used (e.g.

FITS ASCII tables versus the default BINTABLE).

4.2.2 Basi table properties

.

� dmBlokGetName returns the name of the table.

� dmBlokGetDataset returns a pointer to the dataset of whih the table is a member.

� dmBlokGetNo returns the number of the blok in the dataset.

� dmTableGetNoCols returns the number of olumns in the table.

4.2.3 Creating table struture

The dmColumnCreate all reates a salar olumn with a spei�ed data type and name.

Repeated alls may be used to reate all the olumns for a new table. After you start writing

data to the table, you an't add any more olumns.

25

4. Introdution to the DataModel library routines 26

To make an array olumn (a 1-dimensional array of elements in eah table ell), use the

dmColumnCreateArray all.

You an also store an entire n-dimensional array in eah table ell, using a olumn reated

with the dmColumnCreateNDArray routine.

The data model introdues the onept of vetor olumns, in whih several olumns are

grouped together eah with their own name but also with a ommon name. To reate suh

a vetor olumn, use the dmColumnCreateVetor all.

Another kind of grouped olumn imposes a partiular meaning on the grouping, using the

onept of ompound element types (also known as Intervals). This allows us to store ranges

of values rather than point values. For instane, the Good Time Intervals (START,STOP)

are more elegantly handled as a RANGE element for the TIME variable. Columns of this

kind are reated with the dmColumnCreateElement routine (not yet supported).

Combining the high level onstruts to produe arrays of vetored ompound element types

may be done using the (not yet supported) dmColumnCreateGeneri routine; all the

other olumn reate routines are speial ases of this. You an de�ne a set of olumns at

one with dmTableCreateColumns (salar olumns only) or dmTableCreateGeneri-

Columns (generi olumns).

4.2.4 Navigating in the table

To start with, you are always at the �rst row of the table. Repeated read/write operations

will not hange the row. To move to another row, use dmTableNextRow or dmTable-

SetRow (but to write a row, you must use dmTablePutRow, as desribed below). To

�nd out whih row you are at, use dmTableGetRowNo. The routine dmTableGet-

NoRows tells you how many rows are in the table. However, note that in a �ltered table,

dmTableGetNoRows has to �lter the entire table to �gure this out, so if you an avoid

it, do.

To read or write data to the table, you an use ell-based I/O whih operates on one olumn

of one row at a time, olumn-based I/O whih reads/writes multiple rows of a single olumn,

or row-based I/O whih operates on a whole row at one using a C struture.

4.2.5 Cell-based I/O: introdution

To use ell-based I/O you must �rst obtain desriptors for eah olumn you wish to a-

ess, using dmTableOpenColumn or dmTableOpenColumnNo. You an get the entire

26

4. Introdution to the DataModel library routines 27

list of olumns using dmTableOpenColumnList. Then you an navigate the rows using

dmTableNextRow or dmTableSetRow, and use the GetSalar or SetSalar alls and

their relatives to read or write the data.

4.2.6 Column properties

To get or alter the properties of a olumn, use the generi desriptor dmGet/dmSet alls:

� dmGetName, dmSetName - get/set name of olumn

� dmGetUnit, dmSetUnit - get/set unit of olumn

� dmGetDataType - get data type of olumn (annot be hanged)

� dmGetDes, dmSetDes - get/set desriptive omment for olumn

� dmDesriptorGetLength - get length of variable (bytes for string, bits for bitmask,

0 otherwise).

� dmGetArrayDim - get array dimensionality for olumn (annot be hanged)

� dmGetElementDim - get vetor dimension for olumn (annot be hanged)

� dmGetElementType - get element type of olumn (annot be hanged)

� dmGetDisp, dmSetDisp - get display format hint for olumn

� dmColumnGetNo - get number of olumn in table

� dmDesriptorGetRange, dmDesriptorSetRange - get/set legal range of values

for olumn.

� dmDesriptorGetBin,dmDesriptorSetBin - get/set default binning fator for

olumn

� dmDesriptorGetNull,dmDesriptorSetNull - get/set null value for olumn

If the olumn has nonzero array dimensionality, the dmGetArrayDimensions and dmGe-

tArraySize routines may be used to �nd the shape of the array and the total number of

array elements per ell.

If the olumn is a vetor olumn, the dmGetCptName, dmSetCptName routines an

be used to �nd or alter the name of eah vetor omponent and dmGetElementDim an

be used to �nd the number of omponents. For example, one might have a desriptor whose

27

4. Introdution to the DataModel library routines 28

name is DETPOS, with 2 omponents DETX and DETY representing di�erent axes. This

is in ontrast to an array desriptor whih might be say DETX(2), with 2 values from the

same axis. One may even have vetored array desriptors but this is not enouraged. The

routine dmGetCpt returns a salar olumn desriptor orresponding to a single omponent

of a vetor olumn.

Eah desriptor also has an element type and, possibly, an interval type. The element

types supported at release R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. The

dmRANGE and dmINTERVAL element types are understood to desribe losed intervals.

Desriptors also have an Interval Type whih allows you to speify open or semi-open inter-

vals, but this will not be implemented (dmGetIntervalType) until at least R3.

To �nd out whih blok your desriptor belongs to, use dmDesriptorGetBlok.

To hek that your desriptor really is a olumn and not a key, you an use the dmDesrip-

torGetType routine.

4.2.7 Cell-based I/O read and write

To read/write a salar ell value from/to the urrent row, use the olumn desriptor and the

dmGetSalar/dmSetSalar all.

Like FITSIO, our default approah to getting data in and out of tables is ell-based I/O,

where we work on one row and olumn at a time. Thus, the dmTableOpenColumn routine

returns a dmDesriptor* for the olumn:

dmDesriptor* pha_ol = dmTableOpenColumn(table, "PHA");

Reading from this olumn gets the value from the urrent row, whih initially is the �rst row

of the table:

pha = dmGetSalar_l(pha_ol);

This dmGetSalar routine gets a single value from a salar type olumn (the usual sort).

dmGetSalar has various versions subsripted with the data type of the quantity to be

returned; thus dmGetSalar l returns a value that an be stored as a 4 byte integer. To get

the value for the next row, we must advane the urrent row:

dmTableNextRow(table);

28

4. Introdution to the DataModel library routines 29

4.2.8 Cell-based I/O: ompliated ases

As well as salar olumns, our data an be vetor olumns, 1-D array olumns, N-D array

olumns, and vetor array olumns. The dmGetSalar and dmPutSalar routines eah have

ousins to handle these more ompliated types of data. For instane, the dmGetArray

family returns a 1-D array of values for an array olumn.

To handle array and vetor olumns, use dmGetArray/dmSetArray, dmGetVe-

tor/dmSetVetor.

For array olumns, to read or write a retangular sub-array, use dmImageDataGetSub-

Array, dmImageDataSetSubArray. To read or write a single pixel, use dmImage-

DataGetPixel, dmImageDataSetPixel.

4.2.9 Column-based I/O

There is another family of routines, dmGetSalars/dmSetSalars, whih reads/writes

many rows at one. It may be used for olumn-based I/O, whih is eÆient if the table

is small or if the whole table has been read into memory. However, full olumn-based I/O

is not eÆient when working on a large FITS �le whih CFITSIO has bu�ered to be only

partly in memory, sine the whole table must be reread eah time you read in a olumn. In

this ase, you may use dmGetSalars with an intermediate number of rows, and read a bath

of reords at a time.

A ompanion set of routines, dmGetVetors/dmSetVetors, supports vetor olumns.

4.2.10 Row-based I/O

The most onvenient way to aess data in a table when you know what data you want is

to use the row-strut I/O method. In this method, you de�ne a C strut ontaining the

information you are interested in for eah row of the table. For example, suppose that you

know the table ontains the olumns PHA, STATUS and TIME of types long, short and

double respetively. Then de�ne the strut:

strut { long pha; short status; double time } myrow;

If this struture orresponds exatly to the table struture, you an diretly use the

dmTableGetRow routines to �ll myrow with the data and use e.g. myrow.status as a vari-

able. If the table might have extra rows or have the rows in a di�erent order, you have to

29

4. Introdution to the DataModel library routines 30

tell the dm library expliity what your myrow strut ontains. To do this, use the "[ols

pha,status,time℄" seletion operator of the virtual �le syntax.

Note: for string olumns, inlude the extra byte for the terminating null of a C string. For

example

strut { long pha; har label[STRSIZE+1℄; dmBool flag; double values[7℄ } myrow;

See the program examples/dmtest. in the datamodel soure tree for ode whih uses suh

a row.

The dmTableGetRow routine returns the data for the urrent row in the row-struture.

The dmTablePutRow routine writes the row-struture to the internal row bu�ers and

hene to the table. Both of these routines advane the row pointer, so you do NOT need to

all dmTableNextRow when using these routines.

The advantages of row-based I/O are balaned by the disadvantage of a lak of type heking

on the data. Also, if you don't know what data is in the table in advane (generi table

browsing or alulation tools), things get a bit trikier. The dmTableAlloRow routine,

and the dmTableGetColO�set and dmTableGetColPtr routines, provide further row-

based I/O funtionality to support run-time de�nition of the row-based I/O struture.

4.2.11 Preferred Axes

Typially a table may ontain a small number of ruial olumns and a larger number of

olumns with `extra' information. The user will often regard the table as being either a

tabulation of one dependent variable Y against independent variables X1, X2, ...XN (`his-

togram interpretation'), in other words a funtion Y(X1,X2,...XN); in this ase usually the

values of (X1,..XN) do not repeat. Alternatively, the table may be a list of measurements

of independent variables X1, ... XN, whih the user may want to orrelate one with another

(`raw table interpretation') or make a histogram of as N(X1,X2,...XN) (`event list interpre-

tation'). In `�rst look' type software, it is useful to be able to �gure out whih olumns of

the table orrespond to Y, X1, ..XN and whih are `extra' information. The answer to this

for a given table may depend on what the user is interested in, but often there are suitable

defaults. For example, a photon event list might reasonably default to some partiular pair

of spatial oordinates (X,Y), and a spetrum histogram might default to ounts as a funtion

of hannel: COUNTS(CHANNEL). We provide a onvention to reord this information in

the header of the table.

The dmBlokSetPref may be used to reord the defaults in the table; The dmBlokGet-

Pref routine may then be used to extrat the information.

30

4. Introdution to the DataModel library routines 31

4.3 Coordinate Desriptors

4.3.1 Coordinates

Columns in a table or the axes of an image may have oordinate systems attahed to them.

The oordinate system an be thought of as a 'virtual olumn' whih is de�ned in terms of

the original olumn. You get its dmDesriptor* using the dmDesriptorGetCoord routine. In

the simple ase of a salar olumn with a linear oordinate transform, you get the standard

transformation parameters CRPIX, CRVAL and CDELT using the dmCoordGetLinTrans-

form routine.

To write a oordinate system on a table olumn or an image axis group, use the dmCoord-

Create routines. To make an image axis group (a `physial oordinate system' in IRAF

terminology), use dmArrayCreateAxisGroup. To get the group number of the axis

group use dmCoordGetAxisGroupNo, and to open an axis group use dmArrayGe-

tAxisGroup.

To �nd the default oordinate assoiated with a desriptor (if any), all dmDesriptor-

GetCoord. There may be more than one oordinate assoiated with a desriptor; dmDe-

sriptorGetNoCoords and dmDesriptorGetCoordNo may be used to get them all.

Conversely, dmCoordGetParent may be used to �nd the parent desriptor of a oordinate

desriptor.

You an �nd the transform type using dmCoordGetTransformType, and the transform

values CRPIX, CRVAL, CDELT using dmCoordGetTransform. To get the transform

parameters, use dmCoordGetParams. To hange the transform values, use dmCoord-

SetTransform.

4.3.2 Coord values

Suppose you have a salar dmDOUBLE olumn alled TIME (desriptor time with a o-

ordinate alled DATE (desriptor date = dmDesriptorGetCoord(time)). The value

of TIME in the urrent row might be 14823.3 seonds; the orresponding value of DATE

might be JD 2450423.52 days. To read the value of TIME, you use dmGetSalar d on

the olumn data desriptor time. To get the value of DATE for this row, you simply use

dmGetSalar d on the oordinate desriptor date instead.

However, if you want to �nd the DATE for some value of TIME whih is not in the table, you

must apply the transform expliitly by using dmCoordCal. The inverse transformation

is also provided, dmCoordInvert.

31

4. Introdution to the DataModel library routines 32

Example:

dmDesriptor* time = dmTableOpenColumn(table, "TIME");

dmDesriptor* date = dmGetDesriptorCoord(time);

dmTableNextRow(table);

double date_value = dmGetSalar_d(date);

double time_value = dmGetSalar_d(time);

double time_value2 = 45.8;

double date_value2;

double date_value3 = 45382.4;

double time_value3;

dmCoordCal_d(date, &time_value2, &date_value2);

dmCoordInvert_d(date, &date_value3, &time_value3);

4.3.3 Physial and world oordinate systems

Images have both physial and world oordinate systems. (Tables don't have physial sys-

tems; the olumn values are onsidered to be the physial values). The Image LOGICAL

COORDINATES are just the pixel numbers. In the DM, we imagine that for eah logial

axis, there is a physial axis whih has a linear saling on the logial axis, and there may

also be a world oordinate axis whih is a further transform on the physial axis.

Remember that a 2-D image in the DM an onsist either of two axis groups eah with

one subaxis, or of a single axis group with two subaxes. For instane, an image with an

RA,DEC WCS has a single axis group (NGROUPS = 2) and the group has dimension 2.

The oordinate systems attah to the groups, not the individual axes, so there is a single

physial oord desriptor and a single world oord desriptor in this ase, instead of two

separate ones for eah axis. That's beause the mapping of X and Y to RA and DEC mixes

X and Y inextriably. You an yse dmArrayGetNoAxisGroups to get the number of axis

groups in an image.

Examples:

Logial Physial World

Quantity Binned pixel Original pixel RA, De value

Name (X_BIN,Y_BIN) SKY(X,Y) EQPOS(RA,DEC)

Type Always integral Floating? Floating

Unit - pixel deg

32

4. Introdution to the DataModel library routines 33

Quantity Light urve bin Mission time Julian day

Name TIME_BIN TIME JD

Unit pixel s d

Type integral double double

To read these from a 2D image, we do:

dmDesriptor* imageData;

dmDesriptor* phys[2℄;

dmDesriptor* world[2℄;

long ngroups, group, subaxis, axis, dim;

double prpix[2℄, prval[2℄, pdlt[2℄;

double wrpix[2℄, wrval[2℄, wdlt[2℄;

ngroups = dmArrayGetNoAxisGroups(imageData);

for (group = 0; group < ngroups; group++) {

phys[group℄ = dmArrayGetAxisGroup(imageData, group+1); /* 1-based group no*/

world[group℄ = dmDesriptorGetCoord(phys[group℄);

dim = dmGetElementDim(phys[group℄);

dmCoordGetTransform_d(phys[group℄, prpix, prval, pdlt, dim);

if (world[group℄ != NULL) {

dmCoordGetTransform_d(world[i℄, wrpix, wrval, wdlt, dim);

for (subaxis = 0; subaxis < dim; subaxis++) {

axis = group + subaxis;

logial_to_world_pixel_size[axis℄ = pdlt[subaxis℄ * wdlt[subaxis ℄;

}

}

}

Note that in the FITS �le, the logial-to-world transform is stored in the CR-

PIX/CRVAL/CDELT keywords and the logial-to-physial transform is stored in the

C1RPX/C1RVL/C1DLT keywords. The data model ombines these to return the physial-

to-world transform and the logial-to-physial, so you have to do a bit more work to get the

logial-to-world information.

To make an image with these,

har* pname = "SKY";

har* punit = "pixel";

33

4. Introdution to the DataModel library routines 34

har* pptNames[℄ = "X", "Y";

long dim = 2;

double prpix[2℄ = { 128.0, 128.0 };

double prval[2℄ = { 256.0, 256.0 };

double pdelt[2℄ = { 2.0, 2.0 };

har* wname = "EQPOS";

har* wunit = "deg";

har* wptNames[2℄ = "RA", "DEC";

har* wtransform = "TAN";

double wrpix[2℄ = { 256.0, 256.0 }; / * Idential with prval */

double wrval[2℄ = { 271.3, -30.21 }; /* Corresponding RA and De */

double wdelt[2℄ = { -0.0032, 0.0032 };

/* Create linear logial-to-physial transform with initial value the identity transform */

phys[i℄ = dmArrayCreateAxisGroup(imageData, pname, punit, pptNames, dim);

/* Adjust value of transform parameters */

dmCoordSetTransform_d(phys[i℄, prpix, prval, pdelt, dim);

/* Create physial-to-world transform */

world[i℄ = dmCoordCreate_d(phys[i℄, wname, wunit, wptNames, dim, wtransform,

wrpix, wrval, wdelt, NULL);

An example of the use of the physial oord system: suppose you want to �nd the o� axis

angle of a target pixel in a rebinned sky image, given that you know the mean aspet. In

the CXC analysis system, the rebinned sky image's physial oords would be the sky pixel

oords. The de�nition of sky oords is that the tangent point orresponds to the nominal

pointing diretion; in the absene of aspet info that is a good �rst guess. If you have the

RA PNT, DEC PNT keywords that will give you the RA and De of the mean pointing.

We an use CoordInvert to map these to physial oords, and use CoordCal to map your

target logial pixel to physial oords.

dmKeyRead_d(imageData, "RA_PNT", &optax_eq[0℄);

dmKeyRead_d(imageData, "DEC_PNT", &optax_eq[1℄);

dmCoordCal_d(phys[0℄, target_pixel, target_phys);

dmCoordInvert_d(world[0℄, optax_eq, optax_phys);

distane_in_phys_pixels = root_add_squares(optax_phys[0℄-target_phys[0℄, optax_phys[1℄ - target_phys[1℄);

distane_in_arse = distane_in_phys_pixels * wdlt[1℄ * 3600.0;

4.3.4 Coord properties

To get or alter the properties of a oord desriptor, use the generi desriptor dmGet/dmSet

alls:

34

4. Introdution to the DataModel library routines 35

� dmGetName, dmSetName - get/set name of oord

� dmGetUnit, dmSetUnit - get/set unit of oord

� dmGetDataType - get data type of oord (annot be hanged)

� dmGetDes, dmSetDes - get/set desriptive omment for oord

� dmGetArrayDim - get array dimensionality for oord (always 0)

� dmGetElementDim - get vetor dimension for oord (annot be hanged)

� dmGetElementType - get element type of oord (annot be hanged)

� dmGetDisp, dmSetDisp - get display format hint for oord

(Some of these don't do anything useful yet in the ase of oordinates).

If the oord is a vetor oord, the dmGetCptName, dmSetCptName routines an be

used to �nd or alter the name of eah vetor omponent and dmGetElementDim an be

used to �nd the number of omponents. The oord must have the same element dimension

as its parent desriptor.

To get all the information for a desriptor in a single all, use the dmDesriptorInfo all.

To delete a oord, use the dmDesriptorDelete all.

4.4 Header keys

4.4.1 Header keys

Header keys are treated as table olumns with a single row; they are present in both tables

and images. You an reate a new header key as follows:

� Use dmKeyCreate to reate a desriptor for the key, and then use dmSetSalar to

set its value.

� Use dmKeyWrite to reate the desriptor and write the value, unit and desription

at the same time. This is usually the most onvenient.

� Use dmBlokMoveToKey, dmBlokMoveToKeyNo, and

dmBlokAdvaneKeys to reposition yourself in the header so that you an write

keys out of order.

35

4. Introdution to the DataModel library routines 36

In later releases we will support array, ompound element, and vetor header keys. These

may be written analogously:

� Use dmKeyCreateGeneri to reate a desriptor for a generi key, and use various

dmSet routines to set the values;

� or use dmKeyWriteVetor, dmKeyWriteArray, dmKeyWriteInterval to write

the values at the same time as reating the desriptor.

You should therefore be aware that in future key reads may need to take into aount the

element and array dimension of the keys.

To �nd the total number of keys in the blok, use dmBlokGetNoKeys.

To read a header key from a blok, you have the following hoies:

� Use dmKeyOpen to searh for the key by name and return a desriptor for it.

� Use dmBlokGetKey to return a desriptor for a key given its number (order) in

the header. Keys are numbered starting at 1. To get all the keys in the blok, use

dmBlokGetKeyList.

� Use dmKeyRead to searh for the key by name, and return both a desriptor

and the key's value, fored to a partiular data type. If no key of that name is

present, dmKeyRead returns a null desriptor (and zero or blank in the value). Use

dmKeyReadVetor to read vetored or array keys.

� To read or write a salar key value when you already have its desriptor, use the

dmGetSalar/dmSetSalar alls. You an use the dmGetArray/dmSetArray,

dmGetVetor/dmSetVetor, dmGetInterval/dmSetInterval for more ompli-

ated kinds of key.

� To ompare two header keys (typially with the same name but from di�erent �les)

use dmDesriptorCompare.

4.4.2 Key properties

To get or alter the properties of a key, use the generi desriptor dmGet/dmSet alls:

� dmGetName, dmSetName - get/set name of key

36

4. Introdution to the DataModel library routines 37

� dmGetUnit, dmSetUnit - get/set unit of key

� dmGetDataType - get data type of key (annot be hanged)

� dmGetDes, dmSetDes - get/set desriptive omment for key

� dmGetArrayDim - get array dimensionality for key (annot be hanged)

� dmGetElementDim - get vetor dimension for key (annot be hanged)

� dmGetElementType - get element type of key (annot be hanged)

� dmGetDisp, dmSetDisp - get display format hint for key

� dmKeyGetNo gets the number of the key in the header.

If the key has nonzero array dimensionality, the dmGetArrayDimensions and dmGe-

tArraySize routines may be used to �nd the shape of the array and the total number of

array elements per ell.

If the key is a vetor key, the dmGetCptName, dmSetCptName routines an be used

to �nd or alter the name of eah vetor omponent and dmGetElementDim an be used

to �nd the number of omponents. For example, one might have a desriptor whose name

is DETPOS, with 2 omponents DETX and DETY representing di�erent axes. This is in

ontrast to an array desriptor whih might be say DETX(2), with 2 values from the same

axis. One may even have vetored array desriptors but this is not supported for keys.

Eah desriptor also has an element type and, possibly, an interval type. The element

types supported at release R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. The

dmRANGE and dmINTERVAL element types are understood to desribe losed intervals.

Desriptors also have an Interval Type whih allows you to speify open or semi-open inter-

vals, but this will not be implemented (dmGetIntervalType) until at least R3.

To get all the information for a desriptor in a single all, use the dmDesriptorInfo all.

To delete a key, use the dmDesriptorDelete all.

4.4.3 Comments

FITS-style COMMENT and HISTORY header information is supported via the dmBlok-

WriteComment and dmBlokReadComment routines.

37

4. Introdution to the DataModel library routines 38

4.5 Images

4.5.1 Opening an image

You an open an existing image in the following ways:

� Open the next blok in a dataset with dmDatasetNextBlok

� Open a numbered blok in a dataset with dmDatasetMoveToBlok.

� Open a blok by name with dmBlokOpen

� Open a blok and a dataset at the same time using dmImageOpen

In eah of these ases exept for dmImageOpen you must hek that it is an image and

not a table, using dmDatasetGetBlokType, and all dmBlokClose when you are

done with the blok. For dmImageOpen you are guaranteed that it is an image, and you

must all dmImageClose when you are done, whih releases both the blok and the parent

dataset at the same time. One you have opened the image, if you want to aess the image

data or axis info (rather than just the header info) you have to get the desriptor for that

image data using dmImageGetDataDesriptor.

You an delete the image entirely by using the dmBlokDelete all.

To reate an image, you �rst reate the image dataset or blok using dmImageCreate or (if

the dataset exists) dmDatasetCreateImage. You may then name the axes using dmAr-

rayCreateAxisGroup or dmArrayCreateAxisGroups. dmImageGetDataDesrip-

tor returns the newly reated image data desriptor on whih you an use dmSetArray or

dmImageDataSetPixel to write the values.

4.5.2 Basi image properties

.

Images have a set of n axes (often n=2) eah of whih has a dimension (the length of the axis).

They also have a set of pixel values arranged in an n-dimensional array. dmImageGet-

DataDesriptor returns a desriptor for the image data. You an then use dmGetArray

on this desriptor to get the array of values, just as if the image was a ell in a table. Alter-

natively, you an use dmImageDataGetPixel to get the values one pixel at a time. Use

dmGetDataType on the image data desriptor to �nd the data type of the pixel values.

38

4. Introdution to the DataModel library routines 39

To �nd the dimensionality of the image, the dmGetArrayDimensions routine tells you

what and how long eah axis is.

� dmBlokGetName returns the name of the image.

� dmBlokGetDataset returns a pointer to the dataset of whih the image is a member.

� dmBlokGetNo returns the number of the blok in the dataset.

Example:

long* axes;

dmBlok* image = dmImageOpen("image.dat");

har name[MAXLEN℄;

dmBlokGetName(image,name,MAXLEN);

dmDesriptor* data = dmImageGetDataDesriptor(image);

dmDataType type = dmGetDataType(data);

naxes = dmGetArrayDimensions(data, &axes);

free(axes);

dmImageClose(image);

4.5.3 Image axes

� dmArrayCreateAxisGroup reates a desriptor for an axis. It names the axis and

reates a unit oordinate transform from the pixel values to the desriptor.

� dmArrayGetNoAxisGroups returns the number of axis groups on the image.

� dmArrayGetAxisGroup returns desriptor for nth axis group.

� To �nd the physial oordinates at a partiular pixel number in the image, use dm-

CoordCal with the axis group as argument.

� To �nd the pixel value orresponding to partiular physial oordinates, use dmCo-

ordInvert with the axis group as argument.

� To �nd the world oordinates for the image, use dmDesriptorGetCoord on the

axis group. This returns the physial to world transformation.

Example:

39

4. Introdution to the DataModel library routines 40

long logial[2℄ = { 20, 20 };

double physial[2℄;

double world[2℄;

dmBlok* image = dmImageOpen("myimage.fits[1:100,500:600℄");

dmDesriptor* imageData = dmImageGetDataDesriptor(image);

long* axes;

long naxes = dmGetArrayDimensions(imageData, &axes);

long ngroups = dmArrayGetNoAxisGroups(imageData);

dmDesriptor* group1 = dmArrayGetAxisGroup(imageData, 1);

long dim = dmGetElementDim(group1);

dmDesriptor* world_ws = dmDesriptorGetCoord(group1);

dmCoordCal_l(group1, logial, physial);

dmCoordCal_d(world_ws, physial, world);

free(axes);

4.5.4 Image data

� dmImageGetDataDesriptor returns the image data desriptor.

� To read the data from the array, use the dmGetArray all.

� To write the data to the array, use dmSetArray.

� To read or write a retangular sub-array, use dmImageDataGetSubArray, dmIm-

ageDataSetSubArray.

� To read or write a single pixel, use dmImageDataGetPixel, dmImageDataSet-

Pixel.

� To interpolate in the image, use dmImageDataInterpolate.

4.5.5 Image properties

To get or alter the properties of a Image, use the generi desriptor dmGet/dmSet alls on

the image data desriptor.

� dmGetName, dmSetName - get/set name of Image data quantity

� dmGetUnit, dmSetUnit - get/set unit of Image pixel values

� dmGetDataType - get data type of Image (annot be hanged)

40

4. Introdution to the DataModel library routines 41

� dmGetDes, dmSetDes - get/set desriptive omment for Image

� dmGetArrayDim - get array dimensionality for Image (annot be hanged)

� dmGetArrayDimensions - get shape of array (size of eah axis)

� dmGetArraySize - get total number of array elements per ell.

� dmGetElementDim - get vetor dimension for Image pixels (annot be hanged,

usually 1)

� dmGetElementType - get element type of Image pixels (annot be hanged, usually

dmVALUE)

� dmGetDisp, dmSetDisp - get display format hint for Image pixel values

If the Image is a vetor Image (not supported until R3+), the dmGetCptName, dm-

SetCptName routines an be used to �nd or alter the name of eah vetor omponent and

dmGetElementDim an be used to �nd the number of omponents. Eah desriptor also

has an element type and, possibly, an interval type. The element types supported at release

R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. However, images almost always

have an element type of dmVALUE.

To get all the information for a desriptor in a single all, use the dmDesriptorInfo all.

4.5.6 Image pixel lists

An alternate way of representing an image is as a list of pixels and their values. This is on-

venient for sparse arrays, and is related to the event list representation. In a future release,

we will support suh pixel lists. The dmImageDataGetPixlistSize routine returns the

number of nonzero pixels in the ell. dmImageDataGetPixlist and dmImageDataSet-

Pixlist are used to read and write image data in the form of pixel lists. Note that in these

routines the pixel lists are the interfae to the data, but the atual storage of the data in

the �le is still the standard image format (whatever that is for the kernel in question).

4.6 Data Subspae

4.6.1 Subspae olumns

We want to reord in the �le a desription of how the data has been �ltered. Although in

the underlying �le format this may be implemented using header keywords, we treat this

information speially at the data model level.

41

4. Introdution to the DataModel library routines 42

To store a �lter, use the dmSubspaeColCreate routines. For example, in our earlier sample

ode we wrote two header keys desriping the PHA range:

dmKeyWrite_l(out_table, "CHANMIN", 0, "hannel", "Min PHA hannel");

dmKeyWrite_l(out_table, "CHANMAX", MAXPHA, "hannel", "Max PHA hannel");

We might instead write

phamin = 0;

phamax = MAXPHA;

dmSubspaeColCreate_l(out_table, "PHA", "hannel", &phamin, &phamax, 1);

The di�erene is that the �le now intrinsially knows that 0 and MAXPHA are the min and

max values that desripe the PHA variable. Similarly we might write

dmSubspaeColCreate_d(out_table, "TIME", "s", start, stop, ngti);

The SubspaeColCreate ode will reognize TIME as a speial ase and store the array of

values in a separate GTI table. You an also fore data to be stored in a separate table

in FITS using SubspaeColCreateTable; other kernels may do something di�erent, but it

should be analogous to whatever they do for GTIs.

To store a new �lter, use dmSubspaeColCreate or dmSubspaeCreateRegion.

To later alter its values, use dmSubspaeColSet to overwrite old values or dmSub-

spaeColUpdate to interset new values with old values.

To �nd an existing �lter, use dmSubspaeColOpen and then read its values using dm-

SubspaeColGet. These routines may be ombined as dmSubspaeColRead. For a

region �lter, use dmSubspaeColOpen followed by dmSubspaeGetRegion.

4.6.2 Subspae olumn properties

To get or alter the properties of a subspae olumn desriptor, use the generi desriptor

dmGet/dmSet alls:

� dmGetName, dmSetName - get/set name of subspae desriptor

� dmGetUnit, dmSetUnit - get/set unit of subspae desriptor

42

4. Introdution to the DataModel library routines 43

� dmGetDataType - get data type of subspae desriptor (annot be hanged)

� dmGetDes, dmSetDes - get/set desriptive omment for subspae desriptor

� dmGetArrayDim - get array dimensionality for subspae desriptor (annot be

hanged)

� dmGetElementDim - get vetor dimension for subspae desriptor (annot be

hanged)

� dmGetElementType - get element type of subspae desriptor (annot be hanged)

� dmGetDisp, dmSetDisp - get display format hint for subspae desriptor

The subspae desriptor usually has array dimensionality 1; dmGetArraySize routine may

be used to �nd the shape of the array and the total number of array elements per ell.

The dmSubspaeColSet routines are speial in that they an hange the number of array

elements for the subspae.

If the subspae desriptor is a vetor subspae desriptor, the dmGetCptName, dm-

SetCptName routines an be used to �nd or alter the name of eah vetor omponent and

dmGetElementDim an be used to �nd the number of omponents. For example, one

might have a desriptor whose name is DETPOS, with 2 omponents DETX and DETY

representing di�erent axes. This is in ontrast to an array desriptor whih might be say

DETX(2), with 2 values from the same axis. One may even have vetored array desriptors

but this is not enouraged.

Eah desriptor also has an element type and, possibly, an interval type. The element

types supported at release R1/R2 are dmVALUE, dmRANGE, and dmINTERVAL. The

dmRANGE and dmINTERVAL element types are understood to desribe losed intervals.

Desriptors also have an Interval Type whih allows you to speify open or semi-open inter-

vals, but this will not be implemented (dmGetIntervalType) until at least R3.

To get all the information for a desriptor in a single all, use the dmDesriptorInfo all.

To delete a �lter desriptor, use the dmDesriptorDelete all.

4.6.3 Aessing subspae olumns

� dmBlokGetNoSubspaeCols returns the total number of �lters.

� dmBlokGetNoSubspaeCpts returns the number of separate omponents in the

subspae (see the abstrat design doument for details).

43

4. Introdution to the DataModel library routines 44

� dmBlokGetSubspaeColNo gets a �lter by number.

� dmBlokGetSubspae returns the full list of desriptors for the �lters in the sub-

spae.

� dmBlokSetSubspaeCpt sets the value of the subspae omponent number, used

by dmSubspaeColCreate et.

� dmBlokGetCurrSubspaeCpt returns the urrent subspae omponent, used by

dmSubspaeColUpdate, et.

� dmSubspaeColGetTableName returns the name of any assoiated table used by

the olumn.

4.6.4 Subspae routines

These routines may atually parse the data subspae to apply �ltering onstraints.

� dmBlokIntersetSubspae reates a new data subspae whih is the intersetion

of two others.

� dmBlokMergeSubspae reates a new subspae whih is the union (logial OR) of

two others.

� dmBlokPrintSubspae is a diagnosti routine to show the urrent values in the

data subspae.

44

