
ASC Data Model Abstract Design: SDS-3.0

Jonathan McDowell

February 26, 1998

Contents

1 Introduction 3

1.1 Overview of the Model . 3

1.2 What is a Data Model? . 4

1.3 Summary of motivation . 6

1.4 Problems and Solutions . 6

1.5 Informal Introduction to the Data Model 10

1.6 Table columns . 10

1.7 Table Attributes . 11

1.8 Binned Data . 11

1.9 Arrays and Images . 12

1.10 Elements and Quantities . 12

1.11 Stacks . 13

2 Some general requirements 16

2.1 Data Model and �les . 16

2.2 Compatibility Requirements on FITS kernel 16

2.3 The native data model in FITS . 16

2.4 Interaction of Data Model and other infrastructure 18

3 The ASC Data Model, SDS Version 1.2 18

3.1 ASC Table . 20

1

4 Table Data Section 20

4.1 Table Data . 20

4.2 Quantity . 22

4.3 Array Speci�cation . 26

4.4 Array Axis . 26

4.5 Axis Groups . 27

4.6 Coordinate Transform . 27

4.7 Column Data Descriptor . 29

4.8 Interval . 30

4.9 Elements . 31

4.10 Region Description . 34

4.11 Table Data Cell . 34

4.12 Table Row . 35

5 Data Subspace 35

5.1 Introduction . 35

5.2 Unions of subspaces . 37

5.3 General de�nition . 38

6 Header 42

6.1 Attribute Data Descriptor . 42

6.2 Attribute Data Cell and Elements 44

7 ASC Image 44

7.1 Images and Tables . 44

8 Case studies and examples 44

8.1 FITS case study: PSPC o� axis histogram �le 44

8.2 Case Study: Barycenter Correction Algorithm 58

2

1 Introduction

The Science Data Systems Group at the AXAF Science Center (ASC) has been studying the

problems and limitations of current astronomy data analysis systems. The result of that study

is a proposed generic Data Model for astronomical data. The ASC Data Model describes the

common structure for the data to be analysed by our interactive analysis tools. The same structure

should also be used for pipeline processing. In this document I present the proposed ASC Data

Model from the science requirements point of view. This �rst section describes some aspects of the

model, which is presented in detail in later sections.

1.1 Overview of the Model

Our data model has a number of high level goals:

� Create data �les which are more fully self-describing, while retaining back compatibility in

the sense that existing archival FITS �les will be interpreted correctly.

� Systematize the treatment of �ltering, uncertainties, units, and coordinate systems, unifying

the current approach which involves a large number of special cases.

� Allow programs to use both FITS and native IRAF �le formats interchangeably, by supplying

a format-independent interface layer.

� Allow users to write their own programs easily by providing a subroutine interface which

makes accessing the data easy and removes the need for the user to worry about the details

of the �le format.

� Support advanced virtual �le and �ltering operations by providing a uniform convention for

recording the way a �le has been �ltered.

The intent of the model is to describe an abstract representation of a generic astronomical

dataset and to layer extra structure onto existing �le formats to make them more fully self-de�ning.

Our datasets include both binned (image) and tabular data, corresponding to the IRAF IMH

and QPOE formats or the FITS IMAGE and BINTABLE formats. In this document I will make

explicit parallels to the FITS format since it is the externally de�ned export and exchange format.

An important aspect of the design presented here is that existing FITS �les will be interpreted

correctly by the data model. This is achieved through careful use of default values for keywords in

the mapping to FITS.

3

1.2 What is a Data Model?

A data model is an abstract description of our datasets. (Datasets may be �les, or groups of �les

that we want to consider as a unit). It tells us the di�erent properties and attributes a dataset can

have (e.g. `a dataset consists of a header and a table or an array; a table has n columns each with

a name, a data type, a unit, ' ... etc.) This description of the data is possible because all of our

many di�erent datasets can be thought of as special cases of a very small number of basic types

of dataset. In using the data model to describe a dataset, then, we have a way of de�ning that

dataset which makes explicit its di�erences from all other datasets. Furthermore, the data model

contains no information about the storage format of the data. Thus our de�nition of the structure

of a dataset is completely separated from the way in which that structure is implemented on disk -

we distinguish between information that is truly part of the scienti�c data and information that is

bookkeeping or speci�c to the �le format. This makes it easy to support multiple �le formats with

the same data model. The data model can be implemented as an API which lets you access and

manipulate the data using the concepts of the data model.

The data model gives the application writer an interface to the data which is independent of the

details of the �le format. It also provides a standardized structure and language which brings out

the similarities between di�erent kinds of dataset. This standardization is an important advance

beyond the standardization provided by particular data formats such as FITS.

� We make the treatment of the data independent of the choice of disk �le data format, thus

allowing the algorithm to concentrate on the science and making it easy to support the open

architecture of di�erent data formats. It means that applications writers don't have to worry

about the speci�cs of the data format, those are hidden in the interface subroutines.

� The model layers extra structure onto the concepts implicit in the underlying data formats.

� We describe all data in a common structure; by imposing a uniform description we can support

generic tools. We have a way of describing a general data �le independent of the speci�c

structure of the �le (PHA �le, event �le, etc). This means that when you make a new kind

of �le, existing tools can still do something with it. FTOOLS does this at a certain level,

allowing basic �ltering of generic tables, and can be thought of as having a very simple data

model consisting of table columns with no extra attributes. Our software will go well beyond

this, dealing with coordinate systems and other auxiliary quantities in a standardized way.

� Further, all this makes the data more self-describing.

� We explicitly tie information relating to each image axis or table column to that axis or

column. In FITS, there is some of this: a keyword like CRVAL4 tells you the coordinate value

for axis number 4. However, there are a lot of other keywords that don't do this and could

- for instance, TSTART gives the start time for a dataset, but there is no explicit expression

of the fact that this quantity is related to the TIME column in the data.

4

� Note that a single data model table may correspond to many FITS tables. For instance,

the Good Time Intervals, which in the data model are just the ranges for one axis of the

data subspace, have to be kept in a separate table in the FITS �le. At the moment FITS

�les often have an assortment of tables in them, some of which are related to each other and

some of which aren't. Using the data model will help us make much more sensible decisions

about which FITS tables to group together in a single �le. For instance, for an EVENT �le it

helps us realize that the Good Time Intervals are truly just an auxiliary piece of information

describing the main table, while ROSAT Temporal Status Intervals are (at least on the data

model I present here) a separate data object that has meaning separately from the EVENT

data.

� The concept of a data subspace lets us unify the treatment of good time intervals, spatial

regions, and �lter ranges. This makes these concepts independent of whether a particular

column contains temporal, spatial or spectral info, and lets us be much more systematic

about asking the question `to what range of data values does this dataset apply?'.

� Grouping together of header keywords helps us propagate related info more easily, makes it

easier to specify the de�nition of new �les in terms of old ones, and improves user readability

of headers.

� The existence of a data model helps us include support for new features (e.g. uncertainties)

in a systematic way, so we don't have to deal with hundreds of special cases each time. This

applies both to the new features we add now and to future features in later versions of the

model - in other words, having an overall data model reduces overhead in including new

functionality, because it's clear how to add that new functionality in a way that will work

throughout the system.

� The separates out the science description from the details of a data format, allowing us to

de�ne clean mappings to di�erent data formats. This makes it easier to support new data

formats, since the I/O is so well isolated.

How can we be all things to all systems? The crucial idea is the concept of a data model. By

this we don't mean a model of a speci�c dataset, like a spectral �tting functional model, we mean

a model of the concept of astronomical data. More speci�cally, we mean an abstract description of

the structure of our data separate from its implementation in a particular disk storage format. We

note for the software-literate that this abstract description can be - but does not need to be - given

a manifest software implementation as an object or set of objects in an object-oriented language.

Once we have our data model, we can map it to the particular disk data formats we wish to support.

This allows the same code to read FTOOLS FITS �les or PROS QPOE �les and `see' them (after

a translation layer) as identical sources of information. The individual tool will not usually need

any explicit `if FITS then' code, and will not even know what type of �le is being read.

5

In principle such a data model could be arbitrarily complex with many special cases. Actually

it turns out that almost all our data can be described by a single kind of object, perhaps with a

few simple avors. This fact is what gives FTOOLS its strength: much X-ray data analysis can be

accomplished by fairly general manipulations of FITS binary tables. We take FTOOLS' advance

one step farther by separating our uni�ed data description from the speci�cs of the FITS format

(2880-byte blocks, indexed keywords, storing the structure of the main data as header keywords, no

units on keywords, etc), which are not relevant to any of the science algorithms. This separation

turns out to be extremely powerful, and allows us to do a lot more than just support multiple data

analysis contexts.

The existing package tool kits (FDUMP, TPRINT, etc..) will work on our �les but may lose

the extra layers of meaning provided by our data model. We will therefore provide a new set of

infrastructure tools which will do generic operations on our �les. This IS a signi�cant amount of

extra work, but we believe our plan builds on existing infrastructure experience in important ways.

For instance, we wish to unify and extend the PROS concepts of �lters, regions and good time

intervals into a single selector concept; this will greatly increase the exibility of �ltering.

1.3 Summary of motivation

By generalizing our approach, we can get by with fewer distinct tools. By writing the tools using our

data model, and modern software approaches (careful layering, self-describing data, etc.), we can

make each tool more exible, able to do sensible things with data that is in slightly di�erent formats,

or even data representing entirely di�erent physical quantities. We try and strip the algorithm to its

bare bones and encode the speci�cs of the data in the self describing data �les, not in the compiled

code. By designing in low level support for operations on multiple data �les, we make easier the

task of doing the same operation across such sets of data �les and, if desired, combining the results.

The existence of a uni�ed data model will make communications among programs, and between

programs and GUIs, easier to systematize. By including uncertainties, upper limits, units, etc., in

our data model, we standardize their treatment and so allow generic tools to operate on them.

1.4 Problems and Solutions

In this section I discuss various limitations we've come across in the way current systems handle

abstract data manipulation. I concentrate on examples from PROS and FITS since they are the

systems I am most familiar with.

� PROBLEM: PROS regions are handled in a di�erent way from time, PHA �lters.

� SOLUTION: Introduce the idea of a Data Subspace which handles �lters on all data axes in a

uniform way. The user can specify a spatial region anywhere they can specify a PHA or time

�lter. The Data Subspace for a data object records the way that object has been �ltered. If

6

you like, it is the �lter that has been applied to the data so far. The Good Time Intervals are

part of this �lter.

� PROBLEM: Making a detector coordinate image is messy at the moment (PROS keyx, keyy

syntax).

qplist "test.qp[pi=40:90]" region="c 2048 2048 20"

lists photons in a given sky region and PI range, but

display "test.qp[pi=40:90]"

does not take a region argument - you can't display it. To list photons in a detector coordinate

region,

qplist "test.qp[key=(detx,dety),pi=40:90]"

region="c 2048 2048 20"

which is ugly because the speci�cation of the region and the statement that the region applies

to detector coordinates are separated.

� SOLUTION(1): Make regions part of the virtual �le syntax, so you can do:

qplist "test.qp[(detx,dety)=c 2048 2048 20,pi=40:90]"

- this is much more coherent.

� SOLUTION(2) The scientist thinks in terms of `detector position' and `sky position' as single

attributes of the data. Make our software able to work on two-dimensional items named

'DETPOS' and 'SKYPOS' to allow a natural system of

qplist "test.qp[detpos=c 2048 2048 20,pi=40:90]"

Make the data model support 2D objects with a name for the object and for each of its

components (e.g. object name SKYPOS, component names RA and DEC). This makes it

easy for a programmer to make a �le which knows that it contains a bunch of SKYPOS each

of which consists of an RA and a DEC. Current �les don't have any way of letting the software

know which columns are paired together as positions.

� PROBLEM: No standard way to record how the data has been �ltered on PHA or PI.

7

� SOLUTION: The Data Subspace does this automatically. Thus the software will know where

to look to �nd out which (energy-dependent) point spread function would be matched to the

current image - it looks for a PI axis in the image's data subspace.

� PROBLEM: Lots of data products in my directory. Which one is the one I want?

� SOLUTION: An Observation Index �le which is a stack of data products for a particular

observation. This lets the software know automatically which �le contains the exposure map

and the events �le for the observation, so the user doesn't have to type the �lename explicitly.

This �le will be provided as a standard data product. The Data Model will support this by

allowing table columns to have a special data type '�le' so that software can easily identify

the presence of such an index to other �les.

� PROBLEM: Some data manipulation tasks need you to go back and forth between header

keywords and table columns, but header keywords in FITS don't contain as much information

as table columns (short names, no units, no vectors). Examples: we wish to combine event

lists from ACIS chips I2 and I3, which have header CHIP ID values giving the chip ID, getting

an event list with an extra CHIP ID column in which each row is either I2 or I3. Or, we wish

to combine tables of sources detected with three di�erent cell sizes, to make one table with

a CELL SIZE column. The resulting table needs to know the units in which CELL SIZE is

measured. Actually, it would currently have to be CELL SIZ since the header keywords can

only be 8 characters.

� SOLUTION: The data model will support the extra information. The I/O library handles a

convention to write this to FITS in a way that is back compatible with existing data. The

tool program can ask for the same information about a keyword that it would for a column

entry, so the code is more uniform - fewer special cases.

� PROBLEM: We have a blocked sky image and want to know about both the original plane

pixel coordinate system and the celestial spherical coordinate system. FITS only supports

one set of WCS keywords for an image.

� SOLUTION: For array objects, allow an `axis pixel' coordinate system and an `axis coordinate'

coordinate system to retain both sets of information. An alternate approach would be to allow

arbitrary numbers of coordinate systems for each object, so that for instance one could attach

a galactic coordinate system to the image as well. I have decided that this is not such a

good idea, and is better handled by using a coordinate conversion program to transform the

celestial systems.

� PROBLEM: Want a single program to browse and plot all kinds of data �les, labelling axes

sensibly.

8

� SOLUTION: Each axis in the data is liable to have both a local and a `world' value: pixel

position and celestial position, mission time in seconds and calendar date, pulse height and

nominal energy. The data model treats all of these as generic coordinate systems, so a plotting

program can recognize them automatically. Example: pulse height versus time image, with

nominal energies and calendar dates automatically labelled.

� PROBLEM:Want to support a table with images embedded in one of the columns, for instance

aspect camera records.

� SOLUTION: Introduce a data model convention to handle this case, which is supported to

a limited extent in FITS by the multidimensional array TDIMn syntax; further simplify by

considering an ordinary image to be a special case of a table with one row and column.

� PROBLEM:Want to create datasets such as an array of x-ray colors versus best �t parameters,

and invert to make an array of best �t parameters versus x-ray colors.

� SOLUTION: Provide data model support for arrays whose elements are themselves n-dimensional.

� PROBLEM: Want to deal with upper limits properly.

� SOLUTION: The interface to the data �les should be able to cope with any data item being

either a detection, an upper limit, or a detection with uncertainty. Other software, however,

will see the uncertainty ranges as separate columns and won't know that a particular value is

an upper limit.

� PROBLEM: We have a set of PSFs which were created at XRCF at di�erent energies; they are

labelled with a `header keyword' ENERGY. We wish to plot the FWHM of the PSFs versus

energy. In an existing system, one would run the calculate-FWHM program on each PSF �le

separately, capturing the results and running a table creation program to combine them in

a single result table (or noting them down on paper and typing them back in!); plotting the

results might not be trivial either.

� SOLUTION: We should be able to do this with three commands: one to stack the PSF �les

on energy, creating an index �le consisting of a table of energy versus �lename, a second to

run the calculate-FWHM program on the stack, and the third to plot the resulting �le. In our

system, the added bonus is that if the calculate-FWHM program also calculates uncertainties,

these will be picked up by the plotting program.

� PROBLEM: In a derived �le like a light curve, we may make many columns (raw counts,

background counts, net count rate, etc.) even though the basic concept is of time versus net

count rate. We want our plotting software to plot the two columns of most interest by default.

Also, indexing operations may also be carried out on event list columns of `most interest'.

9

� SOLUTION: De�ne `preferred' columns (axes) of the table, which will rank a subset of the

columns in an order which may be di�erent from the order of the columns in the table. A

plotting program which plots two quantities against each other will then take the �rst two

preferred columns if such exist, otherwise it will take the �rst two columns in the table column

order.

1.5 Informal Introduction to the Data Model

In our model, each dataset consists of an ordered set of `Datablocks or simply `Blocks'. An ASC

Block consists of a table whose columns may be scalars, vectors, arrays, or ranges. Header quantities

may be attached to the table as a whole, or to individual columns or to the data subspace. An

important special case of a Datablock table is called an Image, and we will often consider Datablocks

to be of two types, Table and Image (even though strictly speaking an Image can be treated as a

kind of Table).

A table consists of a header, together with a set of rows and columns. I will refer to the

intersection of a row and a column as a `cell'. We expect that some of our tabular data products

will contain small embedded images. For instance, aspect camera data will include 6x6 pixel images

of each �ducial light in every row of the table (the row represents the information from one aspect

camera exposure). Also, we may include small `postage-stamp' images of sources in our source list

data product. This suggests a theoretical simpli�cation: if an image can be in a cell of a table,

we may consider an image on its own to be just a table with one cell. So, instead of two di�erent

fundamental types of data, we have a single type - the `table-which-can-contain-images'. We can

then specify that a table with one row and one column may, if desired, be stored on disk using an

image format instead of a binary table format. We have thus moved the distinction between a table

�le and an image �le to a di�erent level: an image is a component of a table, rather than its peer.

We still, of course, need to have interfaces to operate on images, so this simpli�cation is minor in

practical terms.

The header in a FITS �le is a heterogeneous collection of information. Some of the keywords

describe the �le's structure, while the remainder are metadata: data which apply to the �le as a

whole, but are true science data rather than descriptive of the �le structure. We want to layer extra

structure on the �le so we can tell the di�erence between these types of header keyword. Some

of the metadata has particular importance: it describes how the data in the table columns was

selected. We treat this kind of information in a systematic way and isolate it conceptually as the

table's `data subspace'.

The �gure below gives a schematic example of a complicated table.

1.6 Table columns

FITS already provides support for vectors and arrays in table columns. However, there are several

enhancements we need. Particularly for the case of positional data, we want to have paired table

10

’3C 273’

’Cas A’

(158.4, 218.3)

(22.1, 38.2)

0

0

0

0

2

4

12

4

3
1

2

4

12

3

2

1

detx

dety

dety

detx

32.8 + 0.4-

41.9 + 0.2-

Name Position Image Flux
tpx tpy

EQPOS

(RA,DEC) Intensity

counts/s

Coord

System
Coord System

Cell Size 0.1 degree

Table

attribute

Figure 1: Example of a complicated table. The table is a source list containing `postage stamp'

images of each source. The position column has a coordinate system attached to it, the ux column

has uncertainties, and the whole table has metadata such as the source detection cell size.

columns: for instance, DETX and DETY paired as DETPOS, or RA and DEC paired as EQPOS,

with both the individual and the pair names available in the �le. We also want to support un-

certainties and upper limits, which implies something like having a column FLUX and a column

FLUX ERR (no problem right now) together with a structure which ties the two together as a

single object (Flux with error). Both of these enhancements, and the desire for back compatibility,

lead us to a system with a low level (FITS) set of raw columns and a high level (Data Model) set

of columns, with one high level column mapping to several low level columns.

1.7 Table Attributes

Table attributes are the equivalent of header keywords. Unlike FITS header keywords, we support

the various Quantity attributes such as units, etc. FITS allows 'indexed keywords' which are really

1-D arrays of keywords: we want to support this at a higher level, and add support for `vector

keywords', e.g. grouping together RA and DEC as a single high level table attribute EQPOS.

We'd also like to specify some attributes as belonging to speci�c table columns rather than to

the table as a whole. These are called column attributes. Similarly, the data subspace may have

its own attributes: livetime is an example.

1.8 Binned Data

An event list table consists of values which represent precise points in an n-dimensional space. In

contrast, we often deal with binned data in which the values represent cells of �nite volume in the

space. The simplest example is a histogram with equal size bins, but we also have datasets with

logarithmic bins or even arbitrary bins (e.g. those chosen to match the position of sharp features in

a spectrum). A binned data column can use the same mechanism as the uncertainties for a normal

column, since it just involves specifying a range.

11

1.9 Arrays and Images

When we have binned data with ordered, equal size, contiguous bins, the column of data may

be de�ned implicitly by specifying the start value and step size. Suppose we have a table whose

columns include three binned data columns and two point data columns, one of which happens to

be a 3D position:

C1 C2 C3 C4 C5

[0.5:1.5) [10.0:11.0) [4.8:4.9) 1082.2 (0.0, 18.3, -812.3)

[1.5:2.5) [10.0:11.0) [4.8:4.9) 182.3 (4.3, 12.2. -712.3)

....

[0.5:1.5) [11.0:12.0) [4.9:5.0) 1211.2 (2.1, -1.2, -271.3)

[1.5:2.5) [11.0:12.0) [4.9:5.0) 1232.1 (6.2, -4.2, -0.023)

....

Here the rows are ordered so that C1 changes most rapidly, followed by C2 and then by C3 so

that the grid of cells in the three dimensional C1, C2, C3 space is traversed in a regular order. We

can replace this table by one in which only the values for C4 and C5 are included explictly. The

information about the binned C1, C2, and C3 datasets are stored in the descriptions of the structure

of quantities C4 and C5. C4 is a normal 3-dimensional image; the pixels of the 3-dimensional array

of values in the C4 column are mapped to values of C1, C2 and C3, which are called the axes of

the image. C5 is a more complicated object, an image whose pixels are vector-valued. Support for

objects like C5 (arrays of vectors) is new, but gives added consistency to the data model. Arrays

of vectors are useful, for instance, when the varying centroid position of a source is measured as a

function of several parameters.

1.10 Elements and Quantities

The building blocks of our data are called Elements and Quantities. Let's consider a simple physical

quantity: the energy of the Fe K line, which we wish to store as an object FE K ENERGY. Suppose

we have measured it to be 6:4 � 0:3keV . We will store the name FE K ENERGY and the unit

keV as part of a Quantity of real data type. Associated with this Quantity is a single Element

of dimension 1, which consists of a Value, the number 6.40, and an Uncertainty Range, the three

sigma range [5.5:7.3]. We store the range since this lets us easily handle the case of upper limits:

an upper limit is just an element for which the lower bound of the uncertainty range is zero or

negative. If we get a whole set of measurements of FE K ENERGY, we retain the single Quantity

and associate many Elements with it.

A more complicated Quantity/Element combination would be EQPOS, the equatorial position

of something. EQPOS has a name, a unit (degrees), and two new things: a dimensionality, equal

to two, and a set of component names (RA and Dec), one for each dimension. The corresponding

12

Element is an Element of dimensionality 2. It has two Values and an Uncertainty Ranges of dimen-

sionality 2. A Quantity of dimensionality 1 is called a Scalar, while a Quantity of dimensionality 2

or more is called a Vector.

Another type of Element is the pure Region Element, which has an Uncertainty Range but no

Value. Region Elements are used to describe �lters, regions, intervals, etc.

Multiple Elements associated with a single Quantity are called Arrays. Arrays of scalars are

familiar; arrays of vectors are more complicated, but are sometimes needed. The simplest kind of

array is a one-dimensional array, which simply has a given number of elements. Note the di�erence

between an array with dimensionality 1 and dimension n, and a vector with dimensionality n and

dimension 1.

(14.2, 31.8, 2.2)

x y z

POSITION(3) The numbers represent different

physical quantities or axes

PHA(9)

(14, 21,11,2,3,48,1,0,2)

The numbers represent different

examples of the same quantity

(values along a single axis)

Figure 2: Di�erence between a vector and a 1-D array. In the �rst case, each component has a

name (e.g. `y'); you would plot the n-tuple as a single point in n-dimensional space. In the second

case, the di�erent components do not have names. You would plot this as 9 di�erent points along

a 1-dimensional space. We also use arrays of vectors: for example, PSF centroid position versus

energy and o� axis angle.

1.11 Stacks

To work more e�ectively with multiple sets of data, we introduce the concept of stacks. The simplest

stack is just a list of �les. However, a more powerful kind of stack is a table one of whose columns

contains �lenames: in other words, we have a list of �les which is labelled by the other columns.

As an example, let us consider a set of point spread function calibration images which have been

taken at some quasi-random set of energies and o� axis angles and have similarly random �lenames

PSF42, PSF13, PSFA1, etc. We make a table PSFSTK as follows:

ENERGY THETA PSF_FILE

real real file

0.3 42.1 PSF42

0.3 0.1 PSFA1

....

5.2 0.2 PSF13

13

This gives us a `library' of PSFs which we can look up as a function of the two parameters

ENERGY and THETA. If the ENERGY and THETA parameters are table attributes (header

keywords) in the individual PSF �les, we can imagine a program which would make this stack �le

PSFSTK automatically by saying: look at all the �les in this directory, and for each �le with a

table attribute OBJECT whose value is equal to `PSF', add a record to the stack labelled with the

values of the table attributes ENERGY and THETA. I will call this operation `stacking (a set of

tables) on ENERGY and THETA'.

We then de�ne a `stack operation' at the tool level as follows: if the e�ect of a tool T on a

non-stack �le F is to make a multi-line table T(F), then the e�ect of the tool on a stack is to make

a new stack table where each entry F in the stack column is replaced by the name of T(F). If the

e�ect of T is to make an output �le with a single line, then the entry F is replaced by the contents

of that line (so the output �le is no longer a stack but a single table).

To continue the earlier example, consider two tools T1 and T2, where T1 takes the histogram

of the image pixel values, and T2 returns a one-line table containing the centroid position and

total counts. Running T1 on PSF42 makes a new �le PSF42 IMHIST (say) with several rows and

columns. Running T2 on PSF42 makes a new �le PSF42 CTR with several columns but only one

row:

XCEN YCEN TOT_CNTS

real real integer

42.3 121.2 141412

Then running T1 on PSFSTK should make a new stack as follows:

ENERGY THETA IMHIST_FILE

real real file

0.3 42.1 PSF42_IMHIST

0.3 0.1 PSFA1_IMHIST

....

5.2 0.2 PSF13_IMHIST

as well as making all of the individual IMHIST �les. But running T2 on PSFSTK should make

a single �le

ENERGY THETA XCEN YCEN TOT_CNTS

real real real real integer

0.3 42.1 42.3 121.2 141412

0.3 0.1 52.1 1109.1 32821

14

....

5.2 0.2 9212.2 104.2 1821

The power of this is that it allows us to do aggregate analysis easily: we can now use the generic

plot tool to plot, say, XCEN versus THETA to see how those two parameters vary with each other.

The functionality of stacks is really at a higher level than that of the data model described in

this document, but it is presented here for background.

15

2 Some general requirements

2.1 Data Model and �les

We require that the data model reect the structure of our science data as generally as possible.

Our paradigm for analysing data involves applying tools (programs) to one or several input data

�les, and generating output �les. Data �les may be `standard data products' whose structure and

contents are prede�ned in detail by the ASC, `user-derived data �les' which follow our general

paradigm but whose detailed structure is speci�ed by the user, and `compatible data �les' which

are produced by external analysis systems (including archives of older missions) but which are

su�ciently similar in structure that our software can recognize them. It turns out that almost all

our data can be described in terms of instantiations of a single kind of object, which I will call an

ASC block or ASC Table. There is also a special avor of ASC block called an ASC Image which

is treated separately in some cases.

A requirement is that the division of our data into separate �les should `make sense' to the

scientist, logically related information being kept together. An obvious way to do this in the object-

oriented paradigm is that each �le should contain exactly one ASC Table. However, this will not

work in all cases.

We require that the data model allow the applications programmer to ignore the details of the

speci�c �le format conventions (e.g. FITS, QPOE) but also allow some measure of override access

to the speci�c �le format writing kernels. At least two kernels should be supported by the model,

to support writing and reading FITS �les and IRAF �les. By IRAF �les I mean IMH �les, PROS

QPOE �les, ST Table �les, and possibly ETOOLS EDF �les.

2.2 Compatibility Requirements on FITS kernel

We require that as many of the following existing archival FITS datasets should be readable by the

FITS kernel as valid Science Datasets: Event lists and XSPEC-type PHA and response matrix �les

for the following missions: Einstein, ROSAT, ASCA, and XTE. This imposes requirements on the

FITS keywords used to map data model structures.

2.3 The native data model in FITS

FITS �les contain a set of independent Header Data Units (HDUs). There are several avors of

HDU but the most important ones are IMAGE and BINTABLE. We will consider a FITS �le

containing only IMAGE and BINTABLE HDUs. The HDU consists of a header and a data section.

� The header consists of an arbitrary number of header cards.

� A header card contains a keyword (an 8 character case-insensitive string), a value (of one of

a number of data types), a comment (a string which is usually ignored by software), a data

16

type (which is not given explicitly, but may be deduced from the formatting of the value),

and a card type (deduced from the keyword name).

� The card types are: Mandatory cards, standard reserved cards, local reserved cards, and

ordinary cards. By local reserved cards I mean cards whose keywords are not reserved from

the point of view of the FITS standard but which are given a reserved meaning in some extra

convention to which the particular FITS �le adheres. An example is the WCS convention

which has been proposed for inclusion in the standard and reserves the meaning of several

extra keywords.

� An IMAGE data section consists of an n-dimensional array of numerical values. Associated

with the IMAGE data is the data type of the array elements, the number of dimensions, and

the size of each axis. This information is contained in reserved header cards; scaling and unit

information about the data and coordinate information about the axes may also be associated

with the image in this way.

� A BINTABLE data section consists of a set of columns. Each column has a data type and

a name, and possibly a unit and various coordinate information. All the columns have the

same number of entries.

17

2.4 Interaction of Data Model and other infrastructure

The data model will a�ect the other infrastructure parts as follows:

� The �ltering language describes a virtual dataset in terms of a preexisting one. This descrip-

tion should be complete in the sense that it �lls in all the interface requirements of the data

model.

� The data model I/O should work on �ltered (virtual) datasets. Although the �ltering routines

will use the data model, the interface to the data model and the �ltering are somewhat

separable, but we may want to integrate them for implementation e�ciency.

� Parameter �les should have a rich enough syntax to fully specify a data model scalar or vector.

There should be a way of reading parameter �les to instantiate the parameters as data model

objects.

� Otherwise, the data model stu� should be pretty much decoupled from work like the composite

tools, the �tting model language, etc.

3 The ASC Data Model, SDS Version 1.2

In this section I present the SDS design for a data model, developed by Jonathan McDowell based on

extensive discussions with Martin Elvis, David Van Stone and Peter Patsis. The model represents

a very general kind of table, whose columns can contain vectors or multidimensional arrays, with

associated coordinate systems and other metadata. Further metadata can be associated with the

table as a whole or with individual columns, and a `data subspace' indicates the range of values for

which the table is valid.

This version 1.1 (Mar 1997) has minor di�erences from the version 1.0 document of May 1996.

It includes the addition of unsigned types and variable length array columns. The FITS implemen-

tation and the API have been split out into separate documents; the API is substantially revised.

Version 1.2 (1997 Mar 5) includes handling of null primary arrays in FITS �les and the idea

of a kernel marker in the data descriptor to support this.

A note of explanation is required for object-oriented fans (others may skip this paragraph). A

Rumbaugh diagram for our design, shown below, indicates that only a small number of distinct

objects are used. However, I feel that the Rumbaugh methodology, at least as I have been made to

understand it, obscures understanding of the true structure of our data in which multiplicity and

aggregation of instances play a key role. I therefore use a slightly di�erent kind of diagram, which

I will call a structure diagram, which includes structural components which are not necessarily

distinct objects in the OO sense, and which shows separate instances of an object if (and only if)

the object is instantiated in a separate role. All of the associates represent `has a' relationships.

18

ASC Table

Data Descriptor

Quantity

Name

Component

Coord Transform

Axis Group

Axis

Row

Element

Figure 3: Rumbaugh diagram for ASC Table/block Data Model, showing the fundamental di�erent

object classes. The Data Descriptor class is a composite whose components are shown within an

enclosing box.

19

In less technical language, I'm trying to present an abstraction of a particular kind of scienti�c

dataset. The diagrams I show are an attempt to illustrate the di�erent components that go to make

up this abstraction. Each box is one of these components, and a line going out of the bottom of

one box into the top of another indicates that the second box is a component of the �rst. A symbol

by the end of the line indicates the number of such components that will exist. For instance, in

the Table Model diagram the symbol c appears next to both the line from Table Data to Column

Data Descriptor and the line from Table Row to Column Data Cell. This indicates that there are

the same number of Column Data Cells in a Table Row as there are Column Data Descriptors in a

Table Data, and that we will represent this number as c (it happens to be the number of columns in

the table). If no multiplicity is indicated on a line, there is exactly one of the components attached

to the parent object.

Text underneath a horizontal line below the name of the object indicates parameters (attributes)

associated with that object. For instance, the ASC Table has a Name. A double line at the bottom

of an object box indicates that the structure of the object is complex and there's a whole separate

diagram for it later on. For instance, DSS Data Descriptor is a particular kind of Data Descriptor

object; the Data Descriptor has a diagram of its own, and the text below de�nes what kind of a

Data Descriptor a DSS Data Descriptor is (For instance, unlike a general DD, it can't be an Array.)

All multiple subcomponents are considered to be ordered. In other words, there is a de�ned

order of the columns in a table, a de�ned order of header keywords in the header, and a de�ned

order of the axes in an array. One may refer to a column by its name (e.g. TIME) or by its number

(e.g. Column 4). A single ASC Table Column may map to several columns in an underlying table

format (e.g. FITS BINTABLE), and in general the numbering of an ASC Table component is

distinct from the numbering of the corresponding structure in the underlying data format.

3.1 ASC Table

The highest level object is the ASC block. It consists of three main parts: the Table Data proper, the

Header, and the Data Subspace. Each of these contains Data Cells made up of arrays of Elements

which contain the actual data, and Data Descriptors which provide metadata about the meaning

of the Elements.

The ASC block has a single attribute of its own: the table name.

4 Table Data Section

4.1 Table Data

The Table Data Section represents a table with r rows and c columns. The intersection of a row

and a column is a Data Cell; all the Data Cells in a column have the same structure, and contain

the same type of data; they are described by the Data Descriptor for that column. The di�erent

20

columns in a row may have di�erent structures.

Associated with the Table Data section is an ordered list of Preferred Columns, as a hint to

generic software which only operates on a given number of columns without specifying speci�c

column names.

DATA SUBSPACE HEADER TABLE DATA

DSS

Component

TABLE ROW

Data Descriptor

DSS Data Descriptor
Column

Data Descriptor

Attribute

DSS

Data Cell

Attribute

Data Cell

Column

Data Cell

Element

Attribute

Element

Data

Element

DC

DA

DA DC
1

c

r

r
c

N
AN

H

ASC TABLE MODEL ASC TABLE

Name

DSS Region

DN

Figure 4: Data Model 1: Overall structure of the data model, showing the ASC Table, used as the

highest level data object encapsulating all others.

21

4.2 Quantity

The Quantity object is proved to describe the structure and properties of named quantities. It is

basically a structure which provides a name, a unit and other descriptive information, and speci�es

a data type. It is the abstraction of the FITS BINTABLE's TTYPEn, TUNITn, etc., header

keywords for a column.

QUANTITY

Name
Unit
Description
Data Type
Display Format

Uncertainty level
Array dimensionality

Element dimensionality d
Element type t
Interval type

Name
NAME

COMPONENT

d

Sys. ZP Unc. type

Sys Scale Unc type

Figure 5: Data Model 2: The Quantity object, used to describe the structure and properties of

named quantities (header attributes, table columns, data subspace axes, world coordinates

.

22

We provide the following information for each quantity (much of which may be omitted in actual

disk storage if it is equal to the default value):

� The quantity name, a character string. Any ASCII character string shall be supported, but

at least for now we shall require that for Quantity objects used in the Data Descriptor, the

string shall consist of only alphabetic upper or lower case letters a-z,A-Z; numeric digits, 0-9;

the symbols +,- and underscore (). In particular, spaces are not permitted (except trailing

spaces which are not considered to be signi�cant). At this level, case is signi�cant, although

we anticipate that user access routines will not be case-sensitive and recommend that names

be unique within a table even when case is ignored. The idea here is that we may want to

name something MaxVoltage instead of MAXVOLTAGE so that the software knows how to

print it nicely, but we don't want to require that the user has to get the capitalization right

when searching for it. So case is remembered, and returned correctly, but matches are case

insensitive.

� The quantity unit. A character string which speci�es the physical unit. Should comply with

the HEASARC/OGIP format on unit strings or the JCMLIB speci�cation for unit strings.

� The Description is a string which is used to label human readable output such as ASCII

print �les and graphical axis labels. It is a longer name which may include spaces and other

special characters, including backslash. I suggest the use of TeX escape sequences which are

supported by some graphics libraries such as SM, for instance `n alpha' for �. Thus a Quantity

might have the name `RA' and the description `n alpha (J2000.0)'.

� The Display Format indicates the preferred output format for a single data value associated

with the quantity in a text browser. It is required that the Display Format can be returned

as a string Fortran format speci�cation compatible with the TDISPn keyword in a FITS �le.

This optional information may be provided as a hint to browsers to let them format tabular

output e�ciently. For instance, a quantity stored as a 4 byte integer might be known to only

take values less than 1000, allowing a display format of `I4' instead of the larger `I10' needed

by an arbitrary 4 byte integer. Pixel coordinates might be displayed as `F8.3' while a time

speci�cation in seconds might require the greater precision of `F20.6'. However, the display

format may be absent or the browser may choose not to use it, it's just provided to help make

the output pretty.

� The Data Type indicates the type of data in an associated Element. Supported data types

shall include:

{ Integer, 2 byte

{ Integer, 4 byte

23

{ IEEE Real, 4 byte. The speci�cation of IEEE here indicates that it must be possible to

return the data in IEEE format, and it must be possible to store IEEE special values

such as NaN and -Inf. How the data are actually stored internally or in a data �le is an

implementation detail.

{ IEEE Real, 8 byte

{ Logical, 1 byte

{ String, speci�ed �xed number of bytes s.

{ Datablock Reference, with speci�ed number of bytes s. A Table Reference is a string

which contains a pointer to another named Datablock. A datablock reference 'Table1'

refers to a table named `Table1' in the same directory. The table is assumed to be in a

�le of the same name, but we will also support a syntax `�lename[tablename]' to refer

to a table named `tablename' in �le `�lename'. A reference 'old.�t[Table1]' refers to a

table named Table1 inside a �le named old.�t in the current directory (although we will

recommend that only one ASC Table be stored per �le, an arbitrary FITS or QPOE

�le may in principle contain several unconnected extensions which would be interpreted

as separate ASC Tables.) A reference 'subdir/Table1' refers to the �rst table in a

�le Table1 in a subdirectory subdir. In other words, we will use the Unix-compatible

directory character / to indicate relative directory paths. We will further specify that

higher level paths shall follow the URL convention, so that

URL:ftp://sao-ftp.harvard.edu/pub/jcm/asc/test.tab[Table1]

refers to a table Table1 in a �le test.tab with the speci�ed access via anonymous ftp.

This is not to be taken as a requirement that our software should support accessing such

URLs, I just want to specify a standard way to store them.

{ Unsigned Byte, 1 byte

{ Unsigned Integer, 2 bytes

{ Unsigned Integer, 4 bytes

In addition, the following data types are under consideration for support:

{ Extended Unsigned Integer, 6 bytes

{ Extended Real, 12 bytes (needed for full time precision)

The Bit datatype supported by FITS will not be implemented; it will be interpreted as Unsigned

Byte instead and promoted to a multiple of 8 bits. Complex datatypes will not be supported.

Table 1: Codes for Data Types

24

Data Type API routine su�x FITS CFORM FITS TFORM

Integer/2 s 'I' 'I'

Integer/4 i 'J' 'J'

Real/4 r 'E' 'E'

Real/8 d 'D' 'D'

Logical q 'L' 'L'

String c 'A' 'A'

Block Ref br 'R' '80A'

Unsigned/1 b 'B' 'B'

Unsigned/2 su 'IU' '2B'

Unsigned/4 iu 'JU' '4B'

Unsigned/6 ie 'IE' '6B'

Real/12 de 'DE' 'J' + 'D'

� The Element Dimensionality speci�es the dimensionality d of all Elements associated with

this Quantity. The default is d = 1.

� The Element Type can be Value (V); Value with Uncertainty (U), Value with Fixed Uncer-

tainty (UF), 2D Region (REG), Bin (BF), Bin Start (SF), etc. The di�erent element types

are discussed in full in the section on elements. All Elements associated with the Quantity

must be of the same Element Type.

� An associated Interval Type may be de�ned: see the discussion of Intervals.

� A Kernel marker. This is a placeholder to support extra information needed to reconstitute

a clean �le for a particular kernel. For the FITS kernel, this marker is needed for header

keywords in a binary table. The kernel marker values 'HP', 'HT', 'HB' mean that a header

attribute belongs to the null primary header, to the main bintable, or to both, respectively.

� An associated Uncertainty Level may be de�ned, between 0.0 and 1.0. The range is then

considered to describe the uncertainty at the given percentage con�dence interval. The default

value is 1.0. A common use is to give a value of 0.68 for an element of type U, in which case

the uncertainty range is interpreted as 1 sigma errors.

A possible alternative use for the uncertainty level would be to indicate for a 2D region

representing an X-ray source region the fraction of counts within the region. (A separate U

element might give the source centroid and position uncertainty).

� Array Dimensionality n speci�es the dimensionality of the array of Elements making up a

single Cell associated with the Quantity. If n > 0, there must be an Array Speci�cation

associated with the Quantity; if n = 0 there is no Array Speci�cation. All Cells associated

with the Quantity must have the same array dimensionality and array speci�cation.

25

� If d > 1, there are a set of d Component Names which identify the names of each component

of the associated elements. For instance, we might de�ne a 2-dimensional Quantity with name

SKYPOS and component names RA and Dec. If d = 1 then the single component name is

de�ned to be identical with the Quantity name.

We name certain special cases:

� { A Quantity with d = 1 and n = 0 is known as a Scalar Quantity.

{ A Quantity with d > 1 and n = 0 is a Vector Quantity.

{ A quantity with d = 1 and n > 0 is a Scalar Array Quantity.

{ A quantity with d > 1 and n > 0 is a Vector Array Quantity.

� Finally, a descriptor may have a Comment �eld. This Comment �eld consists of arbitrarily

many 72-byte text strings each with an associated 8-byte tag. The default value of the tag is

the string 'COMMENT'. Other values of the tag are not guaranteed to produce valid �les for

all kernels, although 'HISTORY' and blank are valid for FITS �les. The Comment �eld text

may appear in the underlying �le header anywhere following the appearance of the descriptor

name and preceding the next descriptor name.

4.3 Array Speci�cation

An Array Speci�cation describes the arrangement of a set of N elements into an n-dimensional

array. The n axes of this array, i = 1; :::n, have dimension (size) n

i

, so that

Y

i=1;n

n

i

= N

The elements E(p

1

; :::p

n

) of the array are labelled by array pixel numbers, which are an ordered

n-tuple P = (p

1

; :::p

n

).

4.4 Array Axis

Each axis i of the array is de�ned by a given dimension (size, number of pixels) n

i

. We adopt the

FITS (and Fortran) convention in which the pixel numbers start at one, and in which a default

storage order is implied in the following sense: an Element Number e is de�ned equal to

e(P) = p

n

+ (p

n�1

� 1) � n

n

+ ((p

n�2

� 1) � n

n

n

n�1

+ :::

or

e(P) =

n

X

i=1

0

@

(p

i

� 1)

n

Y

j=i+1

n

j

1

A

26

where

Q

n

j=n+1

n

j

in the �nal term of the sum is interpreted to be equal to one. A mechanism will

be supplied to return the elements in element number order. In FITS �les and in Fortran arrays,

the array elements must be actually stored in element number order.

4.5 Axis Groups

We add a little extra structure to the array to group axes which may have common coordinate

transforms. In our model we consider something like detector pixel position to be a single, two-

dimensional, quantity; if we have a data cube of detector pixel position DETX, DETY versus energy

E we wish to emphasize the fact that DETX and DETY are related to each other in a way that they

are not related to E. In this view, the three dimensional data cube DETX,DETY,E is instead a two

dimensional array with two axes DETPOS and E, in which the �rst axis is itself two-dimensional.

This �rst, two-dimensional axis may have a coordinate system on it which applies a two-dimensional

spherical rotation, or it may have a mask on it which speci�es a two-dimensional region, in each

case requiring that treatment of DETX and DETY be coupled. In contrast, we do not expect to

get situations where we must treat DETX and E in a coupled way (if we do, they will have to be

treated at a higher level).

The Array Speci�cation adds the concept of Axis Groups. In the example above, the three

dimensional array has two axis groups, one a two-dimensional axis group containing the �rst two

axes and another one-dimensional axis group containing the third. We can label the array by axis

group pixel numbers P

G

= ((p

1

; p

2

); p

3

), an ordered pair of a two-dimensional detector position pixel

and an energy bin.

Say there are g axis groups each of dimensionality g

m

;m = 1; :::g. We have

X

m

g

m

= n:

4.6 Coordinate Transform

A Coordinate Transform maps the Elements associated with one Quantity to the Elements associ-

ated with another. A simple example is the mapping of mission time TIME in seconds to Julian

Date JD in days. We de�ne this transformation by choosing a reference value of TIME (usually 0.0)

and the corresponding reference value of JD (the JD when TIME is equal to 0.0; say 2445200.0), and

de�ning the transformation relative to this reference value. If TIME is the correct time in seconds

since the reference value, then the transformation type is LINEAR and the transformation scale is

1.0/86400.0 (the number of days in a second); this completely determines the transformation. If

TIME is a spacecraft clock with glitches and resets, the transformation may be a lookup table or a

polynomial with a more complicated de�nition.

In general, we consider a coordinate transform to link two Quantities which have the same

Element Dimensionality d. One Quantity is referred to as the Pixel Quantity and one as the World

Quantity (this does not necessarily imply that the Pixel Quantity has units of pixels; the names

27

evoke the FITS keywords CRPIX and CRVAL). The transform consists of a Coordinate Transform

Speci�cation which has a Transform Type, a set of d Transform Scales �

i

(i = 1; ::d), and associated

Transform Parameters speci�c to the transform type. It also has a Reference Pixel Element and a

Reference World Element, which are Value Elements (Elements of type V, see below) corresponding

to the Pixel and World quantities. In our example above, the Pixel and World quantities are TIME

and JD, and the Pixel and World Elements have values 0.0 and 2445200.0.

The point here is that we choose to represent an arbitrary transformation by a local linear

transform about a reference point, plus higher order corrections. This has three advantages: it

maps directly to the FITS CRPIX/CRVAL/CDELT convention; it ensures that we have a de�ned

`center' for our transformation, which can be used as a default location by an application; and often

the transformations we use are linear, and don't require any higher order parameters, so it makes

the usual cases simple.

C.T. SPEC

REFERENCE

PIXEL

REFERENCE

Transform Type

ELEMENT
ELEMENT

COORD

TRANSFORM

WORLD

Transform Parameters

Transform Scales

Pixel Quantity

World Quantity
Element dimensionality

Figure 6: Data Model 3: Use of the Coordinate Transform. The Coordinate Transform object

includes the reference pixel element and the reference world element, as well as the world Quantity.

The World element is then de�ned in terms of the Pixel element and quantity with which the

Transform is associated.

28

4.7 Column Data Descriptor

A Data Descriptor provides information about a quantity which we're going to provide values

for. The simplest, minimal Data Descriptor is a Data Quantity which is a scalar Quantity. More

complicated Data Descriptors provide support for vector Quantities, for Arrays (a Quantity with

an Array Speci�cation), and for associated coordinate and axis quantities.

DATA DESCRIPTOR

DATA DESCRIPTOR

DATA QUANTITY

ARRAY SPEC

AXIS GROUP

DATA

COORD
TRANSFORM DATA

COORD

QUANTITY

PIXEL COORD

TRANSFORM
AXIS

GROUP

QUANTITY

AXIS

COORD

TRANSFORM

AXIS

GROUP

COORD

QUANTITY

AXIS

Size

Parent Descriptor

Array Dimen.

Figure 7: Data Model 4: The Data Descriptor object, which consists of a named Quantity and

Array Speci�cation with which data cells will be associated, as well as implicitly de�ned associated

Quantities which label the axes and provide coordinate systems.

Every Data Descriptor has a single Data Quantity. A Data Descriptor whose Data Quantity

is a Vector Array Quantity is called a Vector Array Descriptor, and so on. If the Data Quantity

is an Array Quantity (n > 0) then there is an associated Array Speci�cation with Axis Groups

and Axes. A Scalar Data Quantity in a Column Data Descriptor is the abstraction of the FITS

keywords TTYPEn, TFORMn, TUNITn, etc. An Array Data Quantity corresponds to the FITS

BINTABLE multidimensional array convention for TFORM values. Vector Data Quantities do not

correspond to any existing convention in FITS.

Associated with the Data Quantity there may be a Data Coordinate Quantity linked to it by a

Data Coordinate Transform. For instance, a table may have a column TIME with values included

explicitly in the table cells. The TIME column may have associated with it a quantity JD which

gives the Julian Date. The individual values of JD are not stored explicitly, but are implied by the

JD to TIME coordinate transform. JD is a Data Coordinate Quantity associated with the Data

29

Quantity TIME. The Data Coordinate Quantity and Transform are the abstractions of the FITS

keywords TCTYPn and TCRVLn, TCRPXn, etc.

A Column Data Descriptor with a Data Quantity which is an Array has an Array Speci�cation

with one or more Axis Groups. Each Axis Group may have an associated Axis Group Quantity,

related to it by a coordinate transform called a Pixel Coordinate Transform which must be of

transform type LINEAR. The Axis Group Quantities are the labels of the axes of the array. For

instance, we may have a Data Quantity PSF which is a three dimensional array with axis groups

g

1

= 2 and g

2

= 1, associated with Axis Group Quantities DETPOS (d = 2, component names

DETX and DETY) and ENERGY (d = 1). The element dimensionality of the Axis Group quantity

must be the same as the dimensionality of the Axis Group.

Further, the Axis Group Quantities may themselves have associated Axis Group Coordinate

Quantities related to them by Axis Group Coordinate Transforms. Consider another example

in which the Array has n = 2; g = 1; g

1

= 2 and the single Axis Group Quantity is SKYPOS

with components X and Y representing the X,Y sky pixel coordinate positions. We may associate

with it an Axis Group Coordinate Quantity EQPOS with components RA and DEC, linked by

a coordinate transform of type TAN, representing the actual equatorial sky positions. The Axis

Group Coordinate Quantities are the abstractions of CTYPEn in a FITS image, while the lack of

support for Axis Group Quantites themselves (such as SKYPOS X,Y) is an unfortunate limitation

of current FITS practice.

4.8 Interval

An Interval de�nes a contiguous subset of the data values of the appropriate data type. Intervals

are only meaningful for data types where a well de�ned ordering of the data values exists. For

integer and real types this is the usual ordering; for string types this is de�ned to be the ASCII

ordering.

The most general Interval is a minimum value, a maximum value, and an interval type. Possible

interval types are closed, open, semi-open lower, and semi-open upper, denoted as [a:b], (a:b), (a:b],

and [a:b) respectively. These are de�ned as:

x 2 [a : b] , a � x � b

x 2 (a : b) , a < x < b

x 2 (a : b] , a < x � b

x 2 [a : b) , a � x < b

The semi-open intervals are useful for ensuring that boundary values are not counted twice. For

integer and string data types, the only possible type of interval is Closed. This is also the default

interval type for real data types.

30

4.9 Elements

The actual data for the table is stored in Elements. An Element must be associated with a Data

Descriptor and its Data Quantity. A single Element contains values for one instance of the Quantity.

For example, if the quantity TIME has element type Value with Uncertainty (VU) and element

dimensionality 1, then an Element associated with TIME has one value of the TIME and one

uncertainty for that value (in our terminology, an uncertainty is a potentially complicated object,

which for now we assume is just an Interval - a single range of values, by default corresponding to a

maximum and mininum 100 percent con�dence range, but whose properties may be enhanced in a

later revision of the data model). If the quantity DETPOS has element type Value (V) and element

dimensionality 2, then a single Element of DETPOS has two Value Elements. The simplest kind of

element is an element of type Value and dimensionality 1, which is a single value (numeric or string

according to the associated Quantity's data type.)

The special element type REG applies only to 2-dimensional elements and is a string de�ning a

region in PROS Regions syntax. With the exception of this element type, all d-dimensional elements

consist of uncoupled element components for each of the d dimensions. The most general element

component is a Value plus its Uncertainties or Ranges. We propose to support three di�erent

uncertainties: statistical, systematic zero point, and systematic scale. In addition, we de�ne a

total uncertainty which is a function of these three. We also use the same paradigm to record

bin ranges. Our approach is to treat the systematic uncertainties as separate add-ons, with our

default description being a single value and uncertainty, which is to be interpreted as a statistical

uncertainty if the systematics are present and as a total uncertainty if they are not.

Frequently in a table column we wish to have di�erent values and statistical uncertainties in each

cell, but a single pair of systematic uncertainties for the whole column, expressed as an absolute

zero point error and a fractional (percentage) scale error. An uncertainty which is constant over

all cells is called a �xed uncertainty. Each uncertainty has a signi�cance level; usually we quote

Gaussian 1-sigma uncertainties (uncertainty level 0.68), although in X-ray astronomy 2-sigma (level

0.90) uncertainties are also common, and we may also have occasion to use full range (level 1.00)

uncertainties.

The uncertainties can be represented in many di�erent ways. Each representation is given a

single-character code.

� If no uncertainty at all is present, the code is V (Value).

� The most exible representation is the Interval Uncertainty (I) which uses an Interval to de�ne

the minimum and maximum values within the signi�cance range. If the minimum value is

zero or less, the measurement is termed an upper limit. If the Value component has value v,

and the Interval has min and max of v

1

and v

2

, then for a closed interval type

v

1

� v � v

2

:

Note than the range center (v

1

+ v

2

)=2 is not necessarily equal to v.

31

� A second, more common representation is the Two Sided Uncertainty (T), in which the o�sets

�

+

; �

�

from the nominal value are given. This has the advantage that it may be often used

as a Fixed Uncertainty. In terms of the Interval Uncertainty,

v

1

= v� = �

�

; v

2

= v + �

+

:

� The One Sided Uncertainty (U) is the same as the two sided, but both upper and lower

uncertainties are equal.

v

1

= v � �; v

2

= v + �:

� The Bin (B) is the same as the one sided uncertainty, but the full bin width w rather than the

half bin width � is given. This is more usually employed when the interpretation is a binned

dataset rather than an uncertainty.

v

1

= v � w=2; v

2

= v + w=2:

� The Bin Start (S) is the same as the Bin, but the Value is deemed to be the start of the bin

rather than the center:

v

1

= v; v

2

= v + w:

This representation is often used for light curves.

� The Range (R) is the same as the Interval Uncertainty but there is no associated Value. If a

Value is required, it is assumed to be v = (v

1

+ v

2

)=2.

� The scale uncertainty is always represented as a single nonnegative dimensionless real value

(K) so that the implied range around the value v is

v

1

= v(1�K); v

2

= v(1 +K):

� We also want to support a two sided scale (L) with di�erent upper and lower scale errors, which

arises when we take the logarithm of a quantity with di�erent upper and lower uncertainties.

� Finally, sometimes data is just provided in the form of detections and upper limits. We de�ne

an element type Z which consists of a value v

d

and a limit ag f , with the meaning

iffthenv = v

d

elsev

1

= 0; v

2

= v

d

:

However, I don't propose that we support this element type initially.

Each of these range types can be Fixed, in which case we append the letter F to the element

type. We will further require that elements in a Table Column have a �xed Interval Type for all

cells of the column.

32

ELEMENT

Element Type
Element dimensionality d

Element type

2D Region
Element Component

d
1

Element type

V KI R B S T U

Value Value

Min

Max

Min

Max Value

Width

Value

Width

Value

Upper

Lower

Value

Unc

Interval type

Value

Scale Unc

Value

Upper sc

Lower sc

L

Spec String

Value Interval Range Bin Bin
Start

Two sided
Unc.

One sided

Unc.

One sided
scale.

Two sided
scale.

Figure 8: Data Model 5: The Element object, used to store the actual values. There may be many

elements described by a single Quantity. There is one Element component for each dimension of

the element, except if systematic uncertainties are included in which case there may be up to three

Element components for each dimension.

33

We will later add to the Quantity object a systematic zero point uncertainty type and a sys-

tematic scale uncertainty type, the default values of which are null (not present). The legal values

are the same as for the Element type, and if they are present the usual values are UF for the zero

point uncertainty and KF for the scale uncertainty.

4.10 Region Description

For the two dimensional region descriptions we would like to support those in current systems,

namely:

� Bitmap: appropriate for a binned dataset, provides a list of the pixels in the region.

� Polygon: an ordered list of n points describing a closed polygonal region.

� Shape: A parameterized shape, including the cases Circle, Annulus, Ellipse, Box, Pie.

We can describe the Shape with the following parameters:

� Shape type: elliptical or rectangular.

� Shape center x0, y0.

� Shape radial range r1, r2, interval type. If r1=0, have a Circle or Box. If r1>0, have an

Annulus or annular box.

� Aspect ratio a, ratio of major to minor axis. If a=1 have a circle or square; if a<1 have an

ellipse or rectangle.

� Shape orientation theta0; measures angle between major axis and x axis. Irrelevant if a=1.

� Shape azimuthal range theta1, theta2, interval type. The default is theta1=0 and theta2=360

deg. Any other value gives you a pie or sector (for shape type elliptical; shape type rectangular

may not support sectors).

4.11 Table Data Cell

A Data Cell is associated with a Data Descriptor and contains one set of Elements for that Data

Descriptor. The number of elements in the cell is equal to the number of elements in the array

speci�cation for the data descriptor; in particular, if there is no array speci�cation (data quantity

array dimensionality equal to zero) there is exactly one element in the cell. The elements in the

cell can be accessed via pixel number or element number as discussed in the section on array

speci�cations and axes.

34

4.12 Table Row

In a Table Data section, there is some speci�ed number r of Table Rows. Each Row may be thought

of as containing one Data Cell for each of the Column Data Descriptors. More precisely, there is

one Data Cell associated with each combination of row and column.

5 Data Subspace

5.1 Introduction

What distinguishes a photon event list from a table in an ordinary database? The rows of the event

list represent individual, asynchronous events. They cannot be interpreted without knowing the

�lter through which those events were selected. Suppose we detect photons only between times 100

and 200. Is this because the source ared during that time, or because the satellite was only looking

during that time period? To be more precise, if you just have an ordinary table of rows, what you

are missing is the information about what rows would NOT have been allowed in the table - in

the photon event list case, which events would NOT have been detected. We are then led to the

concept of the data subspace: in the space of all possible data, what subspace is being sampled by

the current table?

This idea is closely connected with the idea of �ltering. The data subspace is simply the �lter

that has been applied to the data. However, we're not just talking about user �lters applied during

processing, but also implicit �lters applied by the act of observation at a particular time with a

particular instrument. If the user then �lters the data further, the new data subspace is simply the

intersection of the �lter with the old subspace.

If two datasets are merged, the new data subspace is the union of the old ones. In this case,

however, we lose some information: the data subspace paradigm doesn't retain information about

which of the original subspaces a particular row belonged to. This is the usual problem with binning

data together, which we can illustrate with a familiar example: combining two pulse height spectra.

Suppose we have two event lists E1 and E2 with the following data, representing events from two

di�erent ACIS chips which are distinguished by di�erent ranges of detector position DETPOS:

E1 subspace: DETPOS=[0:1024,0:1024]

E1 table:

DETPOS PHA TIME

100 245 8 4922.2

231 928 17 4812.5

....

E2 subspace: DETPOS=[1024:2048,0:1024]

E2 table:

35

DETPOS PHA TIME

1241 621 22 4924.3

1782 212 7 4092.2

...

If we extract two PHA histograms P1 and P2, retaining only pulse heights from 2 to 100 and

selecting a region near the boundary of the chips where we think there is a source, we get:

P1 subspace: DETPOS=[1000:1024,800:825], PHA=[2:100]

P1 table:

PHA COUNTS

2 0

3 4

....

100 1

P2 subspace: DETPOS=[1024:1124,800:825], PHA=[2:100]

P2 table:

PHA COUNTS

2 1

3 2

...

If we then merge these two datasets to form P3, we get:

P3 subspace: DETPOS=[1000:1124,800:825], PHA=[2:100]

P3 table:

PHA COUNTS

2 1

3 6

....

A tool to build the XSPEC response matrix would then check the DETPOS region to see which

chips were involved. In the case of P3, it would see that 20 percent of the region was on one chip

and 80 percent on the other, and would average the two response matrices in that proportion. We

have lost any information about which counts came from which chip. If instead we merge the lists

E1 and E2 to form a new event list which retains the DETPOS column, and then �lter on position

and PHA but don't bin to make the histograms, we get E3:

E3 subspace: DETPOS=[1000:1124,800:825], PHA=[2:100]

E3 table:

36

DETPOS PHA

1012 814 8

1182 803 18

...

although the data subspace is the same as for P3, the information about which chip is involved

for a given event is still available via the DETPOS value for the given event.

In general, any tabular data may have a data subspace which describes the range of data for

which the table applies. The quantities in the data subspace are not necessarily the same as the

quantities in the table itself - see the example of P3 above in which DETPOS is in the data subspace

but not in the table.

5.2 Unions of subspaces

A more complicated case of merging subspaces is when we wish to use `incompatible' �lters. For

example, perhaps the second chip has unreliable data in PHA channels 2 to 10, so we want to apply

a di�erent PHA �lter to it. We �lter E1 and E2 with di�erent �lters and then merge them to make

E4:

E4 subspace:

Component 1: DETPOS=[1000:1024,800:825], PHA=[2:100]

Component 2: DETPOS=[1024:1124,800:825], PHA=[11:100]

E4 table:

DETPOS PHA

1012 814 8

1182 803 18

...

When two �lters (subspaces) are unioned (logical OR), we describe them as di�erent `compo-

nents' of the subspace.

What if the di�erent �lters involve �ltering on entirely di�erent quantities? Consider the case

when E1 is �ltered on PHA and E2 is �ltered on TIME.

E5 subspace:

Component 1: DETPOS=[1000:1024,800:825], PHA=[2:100]

Component 2: DETPOS=[1024:1124,800:825], TIME=[4823.2:4890.1),[5012.4,5100.0)

E5 table:

DETPOS PHA TIME

1012 814 8 4902.54

1182 803 18 4823.80

...

37

To simplify the treatment, we note that we can make the quantities involved in the two compo-

nents the same by adding the trivial �lters TIME=[�1 :1] and PHA=[�1 :1] to components 1

and 2 respectively. Doing this lets us store a single list of the quantities involved in a data subspace,

instead of requiring us to maintain separate lists for each component.

5.3 General de�nition

1. A Data Subspace (DSS) D consists of DC = 0+ Data Subspace Components (DSS Com-

ponents) C(i); i = 1;DC and a list of DA = 0+ Data Subspace Data Descriptors or Data

Subspace Axis Groups A(j); j = 1;DA. (Note: The notation n

C

= 0+ means that there

are zero or more of the entities in question, and that the number of entities will be denoted

by DA.) There is usually only one DSS Component in a DSS, i.e. DC=1. The name Axis

Group reects the fact that the data subspace could be represented by an array with those

axis groups (although the pixel values of that array are not de�ned).

2. A Data Subspace Data Descriptor or Data Subspace Axis Group is a named object which

has the same properties as the generic Data Descriptor de�ned above, particularly including

a name and a dimensionality. An example of a data subspace axis group might be TIME, or

POSITION. However, a Data Subspace Data Descriptor may not have associated array Axis

Group Quantities, or array Axis Group Coordinate Quantities. Further, it must have array

dimensionality 1. An important distinction between the DD for Table Data and the DD for a

Data Subspace is that the array dimension n

1

is to be interpreted as the maximum dimension

for any data cell, rather than the actual dimension for each data cell (see below). However,

the Data Subspace Data Descriptor is allowed to have a Data Coordinate Transform and a

Data Coordinate Quantity.

3. A Data Subspace Component C(i) consists of DA DSS Data Cells RV (i; j), one for each axis

group of the parent data subspace.

4. The Data Cells of a data subspace component consist of n

R

= 0+ Region ElementsR(i; j; k); k =

1; n

R

(i; j). An example of such a Data Cell is a set of Good Time Intervals, or a spatial mask

consisting of several components. The di�erent Data Cells corresponding to di�erent DSS

Components may have di�erent values of n

R

, unlike the Data Cells for di�erent rows of a

Table Data section which must all have the same array sizes. Since there is usually only one

DSS component, this doesn't usually matter.

5. A Data Cell may be de�ned implicitly as a World Coordinate Data Cell. For instance, if the

Data Subspace Axis Group is pixel sky coordinate position SKYPOS (X,Y), and this has a

Data Coordinate Quantity EQPOS (RA,DEC) related to it by a Data Coordinate Transform,

then we may express the Data Cell as a set of region elements attached to EQPOS (the Data

Coordinate Quantity) rather than SKYPOS (the Data Quantity) - say, a circle expressed as

38

`(c 14:04:11 -00:23:12 6.2')', i.e. a 6.2 arcmin circle around the speci�ed sexagesimal RA and

Dec, instead of `(c 4212.2 5123.2 42.1)' in pixels. I haven't included this explictly in the

diagrams; in the FITS implementation I have suggested parallel keywords DSn and DSCn for

regions expressed in the pixel and world systems respectively.

6. A Region ElementR(i; j; k) in a data subspace data cell is a range element if the dimensionality

of the corresponding Data Subspace Axis Group is 1, and is a 2D Region Element in the

dimensionality of the corresponding Data Subspace Axis Group is 2.

From a set-theory point of view,

RV (i; j) = [

k

R(i; j; k)

and

C(i) = \

j

RV (i; j)

and

D = [

i

C(i) =

[

i

0

@

\

j

([

k

R(i; j; k))

1

A

39

Data Subspace

A1

A2

A3

R111 R112

R121

R131
R131

R121

R211

R221

R231

C1 C1

C2

RV11

Figure 9: Illustration of a data subspace.

40

7. A data point P, consisting of values V

j

, j = 1;DA, is said to be `in' the data subspace if it

is in any one of the components. It is in a component if it is in all of that component's data

cells. It is in a data cell if it is in any of the data cell's region elements.

8. The intersection of two data subspaces D

1

and D

2

is calculated as follows: First extend the

lists of axis groups of each subspace to be the same. Then

D

1

\D

2

=

[

i

0

@

\

j

([

k

R

1

(i; j; k))

1

A

\

[

m

0

@

\

j

([

n

R

2

(m; j; n))

1

A

or

D

1

\D

2

=

[

i

[

m

0

@

\

j

�

[

k

[

n

R

1

(i; j; k)R

2

(m; j; n)

�

1

A

The case of a single point can be understood as a special case of this. Consider the value

components V

j

as closed zero-length ranges [V

j

: V

j

]; then P is a data subspace with one

component and R(i; j; k) = [V

j

: V

j

]. The above formula tells us to intersect each component

with the corresponding range.

Examples of intersection of data subspaces: First, let's take the point case. Let the data subspace

be that of E5 above:

Component 1: DETPOS=[1000:1024,800:825], PHA=[2:100], TIME=[:]

Component 2: DETPOS=[1024:1124,800:825], PHA=[:], TIME=[4823.2:4890.1),[5012.4,5100.0)

Then let P be the point (DETPOS,PHA,TIME)=((1100,812),200,5050). We have:

A(1) = DETPOS

A(2) = PHA

A(3) = TIME

R(1,1,1) = Box 1000:1024, 800:825

R(1,2,1) = [2:100]

R(1,3,1) = [:]

R(2,1,1) = Box 1024:1124, 800:825

R(2,2,1) = [:]

R(2,3,1) = [4823.2,4890.1)

R(2,3,2) = [5012.4,5100.0)

V(1) = (1100,812)

V(2) = 200

V(3) = 5050

41

So �rst we intersect P with component 1. The intersection is null, since V(1) has no overlap

with R(1,1,1) and V(2) has no overlap with R(1,2,1). Next we intersect with component 2. The

intersection of V(1) with R(2,1,1) is V(1) itself; similarly for V(2). V(3) is outside R(2,3,1) but

inside R(2,3,2) and thus inside their union as required. So the intersection of P with component 2

of the subspace is P itself. Thus, P is inside the subspace.

Now let's take the intersection of two �lters. Let the second space be a simple time �lter with

two intervals, TIME=[4000:4800],[6000:7000]. To do the intersection we add the missing axes:

R(1,1,1)=[:,:]

R(1,2,1)=[:]

R(1,3,1)=[4000:4800]

R(1,3,2)=[6000:7000]

Then evaluating the intersection equation gives the expected result:

A(1) = DETPOS

A(2) = PHA

A(3) = TIME

R(1,1,1) = Box 1000:1024, 800:825

R(1,2,1) = [2:100]

R(1,3,1) = [4000:4900]

R(1,3,2) = [6000:7000]

R(2,1,1) = Box 1024:1124, 800:825

R(2,2,1) = [:]

R(2,3,1) = [4823.2,4800.0]

Note that the second element of the TIME region vector in component 2 has disappeared, since it

had no overlap with the new �lter. The interval type of the �rst element has changed, it is now

a closed interval. If the �lter had been [4000:4700], the entire second component would have been

removed.

6 Header

The ASC Table Header contains metadata analogous to FITS header keywords. We allow ASC

header attributes to have all the properties of a Quantity, in contrast to FITS header keywords

which do not have the full properties of a FITS table column.

6.1 Attribute Data Descriptor

An Attribute Data Descriptor has the same structure as a Table Column Data Descriptor. However,

in an initial implementation we will not support array dimensionality greater than 1 or axis group

quantities (cf. DSS Data Descriptor).

42

DATA DESCRIPTOR

DATA DESCRIPTOR

DATA QUANTITY

ARRAY SPEC

AXIS GROUP

DATA

COORD
TRANSFORM DATA

COORD

QUANTITY

AXIS

Size

Parent Descriptor

Array Dimen.

RESTRICTED

=0,1

Figure 10: Data Model 6: Restricted Data Descriptor, used in Attribute Data Descriptor and DSS

Data Descriptor. Does not support full Array/Image functionality.

43

Attributes may be related to other `parent' data descriptors, either other attributes or columns or

data subspace axis descriptors. Attributes that are related to columns are called column attributes.

Attributes that are related to data subspace axes are called data subspace attributes. All other

attributes are table attributes. A generic FITS header keyword is a table attribute; the idea of

tying header keywords to particular columns is new. A table attribute which is related to another

table attribute may be considered as part of a group (equivalence class) of table attributes; this

allows us to group header keywords and refer to them by groups rather than individually.

6.2 Attribute Data Cell and Elements

The Attribute data cell and elements are the same as those for Table Data.

7 ASC Image

7.1 Images and Tables

An ASC Image is an ASC Table with a single Table Column Data Descriptor whose array dimen-

sionality n > 0 and with a single Row. Special access routines will be provided for ASC Images.

Any single array Data Cell in a table may also be treated as an ASC Image; to instantiate it as

such an image, copy it to a new ASC table together with the DSS, the Table Attributes, as well as

the Data Descriptor and Column Attributes for its own Column, but discarding the other rows for

the column and discarding the other column data descriptors, cells, and column attributes.

I illustrate the structure of an ASC Image in the accompanying diagram; note that from the

OO point of view this is just an instance of the ASC Table, not a separate model.

8 Case studies and examples

8.1 FITS case study: PSPC o� axis histogram �le

An ASCII dump of a Rosat PSPC FITS �le for the o� axis histogram for an extracted source is

reproduced below; I then interpret it in terms of the data model.

XTENSION= 'BINTABLE' / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 8 / width of table in bytes

NAXIS2 = 14 / number of rows in table

PCOUNT = 0 / size of special data area

GCOUNT = 1 / one data group (required keyword)

TFIELDS = 2 / number of fields in each row

44

DATA SUBSPACE HEADER

DSS

Component

Data Descriptor

DSS Data Descriptor

Data Descriptor

Attribute

DSS

Data Cell

Attribute

Data Cell Data Cell

Element

Attribute

Element

Data

Element

DC

DA

DA DC

1

1 r

N
AN

H

Name

DSS Region

ASC Image

IMAGE DATA

Image

Image

Figure 11: Data Model 7: ASC Image Model, identical to Table Model but without Table Row and

with only one Column Descriptor (Image Descriptor).

TTYPE1 = 'OFF_AX_RAD' / Off-axis grid point for histogram bin (arcmin)

TFORM1 = '1E ' / data format of the field: 4-byte REAL

TUNIT1 = 'arcmin ' / physical unit of field

TTYPE2 = 'FRAC_TIME' / Fraction of time spent by source in bin

TFORM2 = '1E ' / data format of the field: 4-byte REAL

TUNIT2 = 'NONE ' / physical unit of field

EXTNAME = 'OAH005 ' / Detect extension-asp histogram for given source

CONTENT = 'SOURCE ' / data content of file

ORIGIN = 'USRSDC ' / origin of processed data

DATE = '13/07/94' / FITS creation date (DD/MM/YY)

TELESCOP= 'ROSAT ' / mission name

INSTRUME= 'PSPCC ' / instrument name

OBS_MODE= 'POINTING' / obs mode: POINTING,SLEW, OR SCAN

IRAFNAME= 'rp110590n00_oah005.tab' / IRAF file name

MJDREFI = 48043 / MJD integer SC clock start

MJDREFF = 8.79745370370074E-01 / MJD fraction SC clock start

ZERODATE= '01/06/90' / UT date of SC start (DD/MM/YY)

ZEROTIME= '21:06:50' / UT time of SC start (HH:MM:SS)

45

RDF_VERS= '2.9 ' / Rationalized Data Format release version number

RDF_DATE= '13-JUL-1994' / Rationalized Data Format release date

PROC_SYS= 'SASS7_2_0' / Processing system

PROCDATE= '2-JUN-1994 11:20:34' / SASS SEQ processing start date

REVISION= 2 / Revision number of processed data

FILTER = 'NONE ' / filter id: NONE OR BORON

OBJECT = 'XRT/PSPC PSF AR LAC' / name of object

RA_NOM = 3.320239E+02 / nominal RA (deg)

DEC_NOM = 4.551389E+01 / nominal DEC (deg)

ROLL_NOM= -1.349511E+02 / nominal ROLL (deg CCW North)

EQUINOX = 2.000000E+03 / equinox

OBS_ID = 'CA110590P.N10' / observation ID

ROR_NUM = 110590 / ROR number

OBSERVER= 'MPE, ROSAT-TEAM' / PI name

SETUPID = 'NOMINAL ' / Instrument setup

DATE-OBS= '20/06/90' / UT date of obs start (DD/MM/YY)

TIME-OBS= '11:24:43.000' / UT time of obs start (HH:MM:SS)

DATE_END= '20/06/90' / UT date of obs end (DD/MM/YY)

TIME_END= '13:07:12.000' / UT time of obs end (HH:MM:SS)

MJD-OBS = 4.806248E+04 / MJD of seq start

SCSEQBEG= 1606667 / SC seq start(sec)

SCSEQEND= 1612816 / SC seq end (sec)

NUM_OBIS= 2 / Number of obs intervals (OBIs)

LIVETIME= 1.884999E+03 / Live time

DTCOR = 9.602644E-01 / Dead time correction factor

ONTIME = 1.963000E+03 / On time

MPLSX_ID= 5 / Source number from merged source list (MPLSX)

EFFAREA = 1.0000E+00 / Effective area scaling factor

QUALITY = 0 / Quality of data (0 = good data)

RADECSYS= 'FK5 ' / WCS for this file

OFFAX = 1.478056E+01 / Off-axis angle of source in arcmin

COMMENT

COMMENT The following keywords are required in order to conform

COMMENT to the Office of Guest Investigator Programs standard:

COMMENT

AREASCAL= 1.0000E+00 / Area scaling factor

BACKFILE= 'NONE ' / No background file

BACKSCAL= 1.0000E+00 / Background scaling factor

CORRFILE= 'NONE ' / No correction file

CORRSCAL= 1.0000E+00 / Correction file scaling factor

RESPFILE= 'NONE ' / BLDRSP response file name (default)

ANCRFILE= 'NONE ' / BLDRSP ancillary response file name (default)

46

XFLT0001= ' ' / Required keyword

PHAVERSN= '1992A ' / Version # of OGIP file specification

POISSERR= T / Poissonian errors appropriate

SYS_ERR = 0.0 / No systematic error

CHANTYPE= 'PI ' / Gain-corrected channels used

DETCHANS= 256 / Total number of PHA channels available

COMMENT

COMMENT End required OGIP keywords

COMMENT

COMMENT This extension contains the off-axis histogram

COMMENT for the source given in the header.

HISTORY

HISTORY SASS file used: SPCBF.SEQ

HISTORY

HISTORY Correspondence with SASS variables:

HISTORY

HISTORY OFF_AX_RAD = OFF_SPB

HISTORY FRAC_TIME = OHS_SBP

OFF_AX_RAD FRAC_TIME

0 0

5 0

10 2.17989E-04

15 0.73768

20 0.2621

25 0

30 0

35 0

40 0

45 0

50 0

55 0

57.5 0

60 0

What does this �le contain? There's a lot of stu� all mixed together. We might describe it as follows:

Table OAH005(2 cols, 14 rows)

Colname OFF_AX_RAD FRAC_TIME

Datatype Real(4) Real(4)

Unit none none

Elt type V V

47

Elt dim 1 1

Disp none none

Desc 'Off-axis grid point for histogram bin (arcmin)'

'Fraction of time spent by source in bin'

Component name (same as colname)

Array dim 0 0

Cells: 1 element per cell

Elements: 1 value per element (type V, dimension 1)

Values:

0 0

5 0

10 2.17989E-04

15 0.73768

20 0.2621

25 0

30 0

35 0

40 0

45 0

50 0

55 0

57.5 0

60 0

Data Subspace(4 axes)

TIME [1606667:1612816)

Coordinate: Origin = 0

Value = JD 2448044.379745370370074 d

Delta = 1

Unit = s

Comment SC seq start(sec)

Correction Factor 0.96026 (DTCOR)

RA/DEC Region not given (would be nice!)

2D Coordinate: Origin = not given

Value = J2000 (332.0239, +45.51389)

Delta = not given

Unit = deg

48

The following data subspace axes are not explicitly present in the file:

OFF_AX_RAD [0:60]

Unit = arcmin

Comment Off-axis grid point for histogram bin

FRAC_TIME [0:1]

Unit = none

Comment Fraction of time spent by source in bin

The following header cards from the file are not retained

in our 'model' version as header cards per se because

they contain information about the structure of the

file or the attributes of its data axes:

\small

\begin{verbatim}

Cards from FITS standards, mapped to table structure:

XTENSION= 'BINTABLE' / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 8 / width of table in bytes

NAXIS2 = 14 / number of rows in table

PCOUNT = 0 / size of special data area

GCOUNT = 1 / one data group (required keyword)

TFIELDS = 2 / number of fields in each row

TTYPE1 = 'OFF_AX_RAD' / Off-axis grid point for histogram bin (arcmin)

TFORM1 = '1E ' / data format of the field: 4-byte REAL

TUNIT1 = 'arcmin ' / physical unit of field

TTYPE2 = 'FRAC_TIME' / Fraction of time spent by source in bin

TFORM2 = '1E ' / data format of the field: 4-byte REAL

TUNIT2 = 'NONE ' / physical unit of field

EXTNAME = 'OAH005 ' / Detect extension-asp histogram for given source

Cards from OGIP rules, mapped to subspace and coordinate info:

MJDREFI = 48043 / MJD integer SC clock start

MJDREFF = 8.79745370370074E-01 / MJD fraction SC clock start

ZERODATE= '01/06/90' / UT date of SC start (DD/MM/YY)

ZEROTIME= '21:06:50' / UT time of SC start (HH:MM:SS)

RA_NOM = 3.320239E+02 / nominal RA (deg)

49

DEC_NOM = 4.551389E+01 / nominal DEC (deg)

ROLL_NOM= -1.349511E+02 / nominal ROLL (deg CCW North)

EQUINOX = 2.000000E+03 / equinox

DATE-OBS= '20/06/90' / UT date of obs start (DD/MM/YY)

TIME-OBS= '11:24:43.000' / UT time of obs start (HH:MM:SS)

DATE_END= '20/06/90' / UT date of obs end (DD/MM/YY)

TIME_END= '13:07:12.000' / UT time of obs end (HH:MM:SS)

MJD-OBS = 4.806248E+04 / MJD of seq start

SCSEQBEG= 1606667 / SC seq start(sec)

SCSEQEND= 1612816 / SC seq end (sec)

LIVETIME= 1.884999E+03 / Live time

DTCOR = 9.602644E-01 / Dead time correction factor

ONTIME = 1.963000E+03 / On time

When writing this �le back out, all of the above cards would be generated automatically by the

FITS writing layer; there's no need for any of the software beyond the IO layer to ever deal with

them.

The remaining header cards come in a number of groups, which we can't deduce from the present

structure of the �le:

Ungrouped header cards

OFFAX 14.78056

Unit arcmin

Comment Nominal off-axis angle of source

Header group PROCESSING

CONTENT = 'SOURCE ' / data content of file

ORIGIN = 'USRSDC ' / origin of processed data

DATE = '13/07/94' / FITS creation date (DD/MM/YY)

IRAFNAME= 'rp110590n00_oah005.tab' / IRAF file name

RDF_VERS= '2.9 ' / Rationalized Data Format release version number

RDF_DATE= '13-JUL-1994' / Rationalized Data Format release date

PROC_SYS= 'SASS7_2_0' / Processing system

PROCDATE= '2-JUN-1994 11:20:34' / SASS SEQ processing start date

REVISION= 2 / Revision number of processed data

Header group OBSERVATION_DETAILS

TELESCOP= 'ROSAT ' / mission name

INSTRUME= 'PSPCC ' / instrument name

OBS_MODE= 'POINTING' / obs mode: POINTING,SLEW, OR SCAN

FILTER = 'NONE ' / filter id: NONE OR BORON

OBJECT = 'XRT/PSPC PSF AR LAC' / name of object

OBS_ID = 'CA110590P.N10' / observation ID

50

OBSERVER= 'MPE, ROSAT-TEAM' / PI name

NUM_OBIS= 2 / Number of obs intervals (OBIs)

ROLL_NOM= -134.95

Header group ROSAT_SPECIFIC

ROR_NUM = 110590 / ROR number

SETUPID = 'NOMINAL ' / Instrument setup

MPLSX_ID= 5 / Source number from merged source list (MPLSX)

QUALITY = 0 / Quality of data (0 = good data)

Header group OGIP_COMPAT / These keywords may be ignored by our software

EFFAREA = 1.0000E+00 / Effective area scaling factor

COMMENT

COMMENT The following keywords are required in order to conform

COMMENT to the Office of Guest Investigator Programs standard:

COMMENT

AREASCAL= 1.0000E+00 / Area scaling factor

BACKFILE= 'NONE ' / No background file

BACKSCAL= 1.0000E+00 / Background scaling factor

CORRFILE= 'NONE ' / No correction file

CORRSCAL= 1.0000E+00 / Correction file scaling factor

RESPFILE= 'NONE ' / BLDRSP response file name (default)

ANCRFILE= 'NONE ' / BLDRSP ancillary response file name (default)

XFLT0001= ' ' / Required keyword

PHAVERSN= '1992A ' / Version # of OGIP file specification

POISSERR= T / Poissonian errors appropriate

SYS_ERR = 0.0 / No systematic error

CHANTYPE= 'PI ' / Gain-corrected channels used

DETCHANS= 256 / Total number of PHA channels available

COMMENT

COMMENT End required OGIP keywords

COMMENT

Header group COMMENTS

COMMENT This extension contains the off-axis histogram

COMMENT for the source given in the header.

HISTORY

HISTORY SASS file used: SPCBF.SEQ

HISTORY

HISTORY Correspondence with SASS variables:

HISTORY

HISTORY OFF_AX_RAD = OFF_SPB

51

HISTORY FRAC_TIME = OHS_SBP

How would we redesign this �le to take more advantage of the data model while remaining

compatible with software that expects the old format? While I do not expect that we will be

writing software to regenerate PSPC standard data products in this way, it's a useful exercise to

show what is needed to add the extra structure.

� We add comments to denote Header Groups, grouping the table attributes. This could be

used by browsers to organize the user's view of the data. It would be nice for software to

be able to use such header groups, but there is a risk that some FITS readers will mangle

the order of the header keywords, mixing up the group memberships. I still feel that it's an

enhancement worth having, with the warning to users that if they pass the �les through other

software they may lose that information.

� The other way of making header groups is to explicitly add named cards. This is comparatively

ine�cient but may be the way to go when it's important that the linkage be robust. This is

illustrated with the DAREL keywords for OFFAX and ROLL NOM.

� The dataset is actually binned data; the OFF AX RAD column contains bins which for some

perverse reason are uneven in size near the ends. I could have de�ned a special element type

to denote bins where the boundaries are deduced to be half way to the next entry, but this

would require the software to handle more than one row at a time. I prefer to accept the

overhead of the extra two columns COL1 LO and COL1 HI, turning OFF AX RAD into a

column of element type T (two sided uncertainty).

� We will store the extraction region in the data subspace header. The information includes the

region speci�cation in sky pixel coordinates and the transformation from sky pixel coordinates

to RA and Dec, the latter being copied from the original �le. This gives us a more logical place

to put the info now stored in RA NOM and DEC NOM. If we had the region speci�cation in

RA and Dec instead of pixels, we would store it in keyword DSC1 instead of DS1.

� The preferred columns are OFF AX RAD and TIME; but we don't need to include PREF1

and PREF2 keywords since these are the only two columns at the data model level and they

are in the correct order.

XTENSION= 'BINTABLE' / binary table extension

BITPIX = 8 / 8-bit bytes

NAXIS = 2 / 2-dimensional binary table

NAXIS1 = 16 / width of table in bytes

NAXIS2 = 14 / number of rows in table

PCOUNT = 0 / size of special data area

52

GCOUNT = 1 / one data group (required keyword)

TFIELDS = 4 / number of fields in each row

TTYPE1 = 'OFF_AX_RAD' / Off Axis Radius

TFORM1 = '1E ' / data format of the field: 4-byte REAL

TUNIT1 = 'arcmin ' / physical unit of field

TTYPE2 = 'COL1_LO ' / Lower Uncertainty

TFORM2 = '1E ' / 4 byte real

TUNIT2 = 'arcmin ' /

TTYPE3 = 'COL1_HI ' / Upper Uncertainty

TFORM3 = '1E ' / 4 byte real

TUNIT3 = 'arcmin ' /

TTYPE4 = 'FRAC_TIME' / Fractional Exposure Time

TFORM4 = '1E ' / data format of the field: 4-byte REAL

TUNIT4 = ' ' / physical unit of field

EXTNAME = 'OAH005 ' / Off Axis Histogram

TDISP1 = 'F8.2 ' / Format to display OFF AX RAD

TDISP4 = 'F8.6 ' / Format to display FRAC TIME

TLMIN1 = 0.0 / Valid range for columns

TLMAX1 = 60.0 /

TLMIN4 = 0.0 /

TLMAX4 = 1.0 /

COMMENT

COMMENT ASC Table Keywords

COMMENT

DCFIELDS= 2 / Number of logical columns

DCETYP1 = 'T ' / Two sided uncertainty

DCITYP1 = '[) ' / Interval type

COMMENT

COMMENT ASC Data Subspace Keywords

COMMENT

DSNAXIS = 1 / Number of data subspace axes

DSNAM1 = 'SKYPOS ' / Sky pixel position

DSDIM1 = 2 / Dimension of DSNAM1

DSTYP1 = 'X ' / First component of DSNAM1

DSTYP2 = 'Y ' / Second component of DSNAM1

DSUNIT1 = 'pixel ' /

DSCNAM1 = 'EQPOS ' / Coordinate system on DSNAM1

DSCTYP1 = 'RA---TAN' / Transform for axis 1

DSCTYP2 = 'DEC--TAN' / Transform for axis 2

DSCUNI1 = 'deg ' /

DSCRVL1 = 332.0239 / Reference RA value (RA_NOM)

DSCRVL2 = 45.5138 / Reference Dec value (DEC_NOM)

53

DSCRPX1 = 4096.5000 / Reference X value

DSCRPX2 = 4096.5000 / Reference Y value

DSCDLT1 = -0.0124 / Deg per pixel

DSCDLR2 = 0.0124 / Deg per pixel

DS1 = 'c 4087.3 4012.3 43.2' / Extraction region in X,Y coords

DSTYP3 = 'TIME ' / Mission time

DSUNIT3 = 's ' /

DS2L1 = 1606667.0 / Start time

DS2U1 = 1612816.0 / Stop time

DSITYP3 = '[) ' / Interval type for TIME

COMMENT

COMMENT Alternative syntax for the above three keywords would be:

COMMENT DS2 = '[SCSEQBEG:SCSEQEND)'

COMMENT

DSCTYP3 = 'DATE ' / Calendar date

DSCDLT3 = 1.15741E-05 / Days per second

DSCRVL3 = 48043.879745370370074 / MJD of SC clock start

DSCRPX3 = 0.0 / SC clock start

DSCUNI3 = 'd ' /

DSTYP4 = 'OFF_AX_RAD' / Range defaults to TLMIN1/TLMAX1

DSTYP5 = 'FRAC_TIME ' /

COMMENT

COMMENT ASC Table Attributes

COMMENT

COMMENT We only need to use explict DANAMn keywords when we

COMMENT want to add extra information to a keyword.

COMMENT

DANAM1 = 'OFFAX' / Attribute

OFFAX = 1.478056E+01 / Off-axis angle of source in arcmin

DAUNI1 = 'arcmin' / Unit of DANAM1

DAREL1 = 'OFF_AX_RAD' / Keyword OFFAX is bound to column OFF AX RAD

DANAM2 = 'ROLL_NOM' / Attribute

ROLL_NOM= -1.349511E+02 / nominal ROLL (deg CCW North)

DAUNI2 = 'deg' /

DAREL2 = 'SKYPOS' / ROLL_NOM bound to DSS axis SKYPOS

DANAM3 = 'SRC_OFF_AX_RAD' / Same as OFFAX,

DAVAL3 = 1.478056E+01 / but illustrating a name longer than 8 chars

DAUNI3 = 'arcmin ' /

54

DANAM4 = 'ONTIME ' / Denote the fact that the keywords named

DAREL4 = 'TIME ' / are tied to the TIME information, so if that

DANAM5 = 'DTCOR ' / becomes invalid so do these.

DAREL5 = 'TIME ' / Debatable whether we would actually bother

DANAM6 = 'LIVETIME' / to add these linkages in this case.

DAREL6 = 'TIME ' /

COMMENT

COMMENT Header Group PROCESSING

COMMENT

CONTENT = 'SOURCE ' / data content of file

ORIGIN = 'USRSDC ' / origin of processed data

DATE = '13/07/94' / FITS creation date (DD/MM/YY)

IRAFNAME= 'rp110590n00_oah005.tab' / IRAF file name

RDF_VERS= '2.9 ' / Rationalized Data Format release version number

RDF_DATE= '13-JUL-1994' / Rationalized Data Format release date

PROC_SYS= 'SASS7_2_0' / Processing system

PROCDATE= '2-JUN-1994 11:20:34' / SASS SEQ processing start date

REVISION= 2 / Revision number of processed data

COMMENT

COMMENT Header Group Observation Details

COMMENT

TELESCOP= 'ROSAT ' / mission name

INSTRUME= 'PSPCC ' / instrument name

OBS_MODE= 'POINTING' / obs mode: POINTING,SLEW, OR SCAN

FILTER = 'NONE ' / filter id: NONE OR BORON

OBJECT = 'XRT/PSPC PSF AR LAC' / name of object

OBS_ID = 'CA110590P.N10' / observation ID

OBSERVER= 'MPE, ROSAT-TEAM' / PI name

COMMENT

COMMENT Header Group ROSAT Specific

COMMENT

ROR_NUM = 110590 / ROR number

SETUPID = 'NOMINAL ' / Instrument setup

COMMENT

COMMENT Header Group HEASARC Position Keywords

COMMENT

55

RA_NOM = 3.320239E+02 / nominal RA (deg)

DEC_NOM = 4.551389E+01 / nominal DEC (deg)

EQUINOX = 2.000000E+03 / equinox

RADECSYS= 'FK5 ' / WCS for this file

COMMENT

COMMENT Header Group HEASARC Timing Keywords

COMMENT

MJDREFI = 48043 / MJD integer SC clock start

MJDREFF = 8.79745370370074E-01 / MJD fraction SC clock start

ZERODATE= '01/06/90' / UT date of SC start (DD/MM/YY)

ZEROTIME= '21:06:50' / UT time of SC start (HH:MM:SS)

DATE-OBS= '20/06/90' / UT date of obs start (DD/MM/YY)

TIME-OBS= '11:24:43.000' / UT time of obs start (HH:MM:SS)

DATE_END= '20/06/90' / UT date of obs end (DD/MM/YY)

TIME_END= '13:07:12.000' / UT time of obs end (HH:MM:SS)

SCSEQBEG= 1606667 / SC seq start(sec)

SCSEQEND= 1612816 / SC seq end (sec)

MJD-OBS = 4.806248E+04 / MJD of seq start

NUM_OBIS= 2 / Number of obs intervals (OBIs)

LIVETIME= 1.884999E+03 / Live time

DTCOR = 9.602644E-01 / Dead time correction factor

ONTIME = 1.963000E+03 / On time

MPLSX_ID= 5 / Source number from merged source list (MPLSX)

EFFAREA = 1.0000E+00 / Effective area scaling factor

COMMENT

COMMENT Header Group OGIP_COMPAT

COMMENT

COMMENT The following keywords are required in order to conform

COMMENT to the Office of Guest Investigator Programs standard:

COMMENT

AREASCAL= 1.0000E+00 / Area scaling factor

BACKFILE= 'NONE ' / No background file

BACKSCAL= 1.0000E+00 / Background scaling factor

CORRFILE= 'NONE ' / No correction file

CORRSCAL= 1.0000E+00 / Correction file scaling factor

RESPFILE= 'NONE ' / BLDRSP response file name (default)

ANCRFILE= 'NONE ' / BLDRSP ancillary response file name (default)

XFLT0001= ' ' / Required keyword

PHAVERSN= '1992A ' / Version # of OGIP file specification

COMMENT Note that the error info given here applies to the counts errors

56

COMMENT which are in an entirely different table; so we don't

COMMENT attach them to the data model errors in this file.

POISSERR= T / Poissonian errors appropriate

SYS_ERR = 0.0 / No systematic error

CHANTYPE= 'PI ' / Gain-corrected channels used

DETCHANS= 256 / Total number of PHA channels available

COMMENT

COMMENT End required OGIP keywords

COMMENT

COMMENT Header Ungrouped

COMMENT

QUALITY = 0 / Quality of data (0 = good data)

COMMENT

COMMENT This extension contains the off-axis histogram

COMMENT for the source given in the header.

HISTORY

HISTORY SASS file used: SPCBF.SEQ

HISTORY

HISTORY Correspondence with SASS variables:

HISTORY

HISTORY OFF_AX_RAD = OFF_SPB

HISTORY FRAC_TIME = OHS_SBP

OFF_AX_RAD COL1_LO COL1_HI FRAC_TIME

0 0 2.5 0

5 2.5 2.5 0

10 2.5 2.5 2.17989E-04

15 2.5 2.5 0.73768

20 2.5 2.5 0.2621

25 2.5 2.5 0

30 2.5 2.5 0

35 2.5 2.5 0

40 2.5 2.5 0

45 2.5 2.5 0

50 2.5 2.5 0

55 2.5 1.25 0

57.5 1.25 1.25 0

60 1.25 0 0

57

8.2 Case Study: Barycenter Correction Algorithm

We analysed the Barycenter Correction Algorithm to see how it would be laid out in terms of the data

model.

The algorithm uses the following ASC Tables:

� Event List: this contains rows which we refer to as photons, and a set of columns which include at

least Pixel Position and Time. The Pixel Position Column Data Descriptor has Data Quantity

with default name Pixel Position and component names X and Y; it must be of element dimension

2. We will access it by element type V (Value). It must also have a Data Coordinate Quantity

which contains the Equatorial Position (RA and Dec). The Time Data Descriptor may have a Data

Coordinate Quantity giving the absolute Date.

� Orbital Data: This is a stack containing the names of spacecraft and pointers to their Ephemeris

�les.

� Solar System Ephemeris: This is a stack containing the names of planets and pointers to their

Ephemeris �les.

� Ephemeris: This is a table with the columns Time and 3-Vector-Position. The latter has element

dimension 3 and component names X,Y,Z. The ephemeris table has a table attribute Mass, giving

the mass of the orbiting body.

The algorithm is:

� Identify the spacecraft in use for this event list: this should be a table attribute of the event list.

� Find the corresponding spacecraft ephemeris from the orbital data stack.

� Open output table with same format as input event list but with extra column named BARY TIME

of dimension 1 and type U. Unit is seconds of mission time; coordinate system is copied from input

column whose default name is TIME. Add comment to header describing the fact that BARY TIME

is the time of a di�erent event (arrival of a photon at the barycenter) in the same coordinate system

as TIME.

� For each row in the table, get the Pixel Position. Calculate the Equatorial Position using that Data

Descriptor's Data Coordinate Transform.

� Calculate the 3-vector direction of the photon (the source vector)from the equatorial position.

� Get time from row of table (represents photon arrival time at spacecraft). (If the ephemerides are in

JD rather than mission time, may need to also use this Data Descriptor's Data Coordinate Transform

to get JD from time.) Also get time uncertainty if present.

� Interpolate in spacecraft ephemeris at the given time to return the spacecraft ephemeris position and

uncertainty (an element of type U and dimension 3).

58

� For each entry (planet) in the solar system ephemeris stack, interpolate in the corresponding ephemeris

and return the mass of the planet and the position (a value element of dimension 3) at the time.

� Calculate the solar system barycenter at the given time by taking the mass weighted mean of the

planetary positions. Result is an element of type V and dimension 3.

� Calculate the barycenter to spacecraft vector and its uncertainty. Check that the units of barycenter

and spacecraft positions are compatible and apply conversions if necessary.

� Calculate the scalar product of the spacecraft and source vectors and its uncertainty; scale to light

travel time to obtain correction. Correction is an element of type U.

� Add this to photon time and combine uncertainty in quadrature. Result is barycenter corrected time

(BARY TIME).

� Copy input row to output, adding new column of BARY TIME.

� Loop to next photon until complete.

59

