
FITS Keyword Conventions in ASC Data Model �les

SDS-7.2

Jonathan McDowell

January 11, 1999

Contents

1 Introduction 3

1.1 FITS Implementation . 3

1.2 Notes on existing FITS special cases 3

1.3 The name of an HDU . 3

1.4 Extra information for compound columns 4

1.5 Support for preferred columns or axes 5

1.6 Extra information for header keys 6

1.7 Array keywords . 8

1.8 Images . 8

1.9 Coordinate Systems . 9

1.10 Coordinate systems on image block axes 10

1.11 Coordinate Data Descriptors: columns 11

1.12 Coordinate descriptors for array column axes 12

1.13 Keywords for recording �lters . 12

1.13.1 Special cases . 15

2 Systematic algorithm for creating descriptors 16

2.1 Existence of a descriptor on read 16

2.2 Descriptor names . 16

1

2.3 Descriptor component names . 17

2.4 Element dimensionality . 18

2.5 Descriptor units . 18

2.6 Descriptor values . 18

2.7 Data type . 19

2.8 Descriptor desc . 19

2.9 Display format . 19

2.10 Element type . 20

2.11 Array dimensionality . 20

2.12 Array sizes . 20

2.13 Legal range . 21

2.14 Transform type . 21

2.15 Transform values . 21

3 Proposed future conventions 21

3.1 Future enhancement for ASC `element types' 21

3.2 Element types . 23

3.3 Extra keys for header keywords . 23

3.4 Data Subspace keys . 24

2

1 Introduction

This document introduces FITS header keyword conventions for use with the ASC data model. The

guiding principle used is to select defaults so that existing FITS �les should be correctly interpreted

by the data model. The new keywords are as far as possible chosen to be analogous to existing

FITS conventions.

This document supersedes the earlier SDS-7.1 and re
ects the implementation current as of

January 1999. It is intended for those already familiar with HEA (GSFC) FITS conventions.

1.1 FITS Implementation

1.2 Notes on existing FITS special cases

1. Zero-width columns (e.g. 'TFORM3 = 0I') are forbidden.

2. In header keywords, NaNs should be converted to a keyword with a blank value �eld:

FOO = /

In
oating point binary table columns, IEEE NaNs are �ne.

3. Use of TSCAL and TZERO is currently deprecated except for the special case of specifying un-

signed integer types. Recommend use of TCRVL and TCDLT instead, with the corresponding

linear coordinate transform machinery which gives clearer information on the intent.

1.3 The name of an HDU

In our software, each FITS HDU is given a unique name as follows:

� If HDUNAME is present, its value is the HDU name, and we ignore EXTNAME.

� If there is no HDUNAME, but EXTNAME and EXTVER are present, the name is the value

of extname concatenated with the value of extver. Example:

EXTNAME = 'SPECTRUM' / Spectral data

EXTVER = 3 / Version no; ASC name will be SPECTRUM3

� If there is no HDUNAME or EXTVER, but EXTNAME is present, the name is the value of

EXTNAME. We recommend that EXTNAME values not end with digits, since on copying an

HDU to another �le we're likely to strip the trailing digits on the assumption they're meant

to be an EXTVER.

� If there is no HDUNAME or EXTNAME, we name the HDU to be "HDUn", where n is the

HDU number counting the primary array as HDU1. (In earlier releases, we called it HDU0).

3

1.4 Extra information for compound columns

At the ASC's high level Data Model layer, we de�ne compound columns which may map to multiple

FITS columns. This is re
ected in the FITS �le with extra keywords that tie the columns together.

If these keywords are ignored, the columns are just seen as independent in the usual way.

We propose a new set of FITS header keywords to describe the extra structure on top of the raw

BINTABLE. By analogy with keywords like TTYPEn, these new keywords are indexed keywords

beginning with a common letter M (for Meta-column). The most important keywords are MTYPEn

and MFORMn, de�ned by the Common Data Model (CDM) discussion list. MTYPE4 = 'SKY',

MFORM4 ='X,Y', TTYPE13='X', TTYPE14='Y' de�nes a descriptor SKY composed of columns

13 and 14.

To parse a table, we use the following rules:

� The index subscript on the MTYPEn series of keywords does not impose an ordering. De-

scriptor order is imposed by the ordering of the TTYPEi keywords of the �rst element of each

descriptor.

� Although the CDM does not require that descriptor (meta-column) components be adjacent

TTYPEi columns, we will require this for the time being.

� Starting with TTYPE1, we examine the next TTYPEi which has not already been marked

as a component.

� If the TTYPEi value appears as the �rst item in any MFORMn, we have a new compound

column whose name is the value of the corresponding MTYPEn and whose component names

are the comma-separated items in MFORMn. We identify the remaining component names

with TTYPEi values and mark those TTYPEs as components. The element dimension and

element type are inferred from the number of component names and the value, if any, of

METYPn (see later discussion).

� If the TTYPEi value does not appear in an MFORMn, we have a new (non-compound) column

whose name is the value of TTYPEi, and whose element dimension is 1 and element type (see

later) is V.

� Continue until all TTYPEs have been dealt with.

The special keywords are:

� MFORMn (string) is a comma-separated list of names (at least one name; zero is an error)

which de�nes a composite descriptor. Each name should be either the value of one of the

TTYPEn keywords (i.e. a FITS column name) or the name of a FITS keyword. MFORMn

is a CDM keyword.

4

� MTYPEn (string) gives the name of the composite descriptor de�ned by MFORMn. MTYPEn

is a CDM keyword.

� METYPn (string) gives the Data Descriptor's element type. Initially supported types will

be `V' (value), `VU' (value with one uncertainty range), `R' (range, binned data'). `REG'

(2D region string descriptor). If absent, a default value of `V' is assumed. METYPEn is an

ASCDM keyword. As of Jan 1999, METYPn support has not yet been implemented.

� MDESCn (string) gives the Data quantity description (a comment for the compound column).

If absent, the default value is the comment string following the / in the MTYPEn or, if that

is absent, the TTYPEj keyword. We have not implemented MDESCn as of Jan 1999.

We note the following existing FITS keywords and their use:

� TFORMj is used to store the Data Descriptor's data type and the number of elements per

cell, and also the string length if applicable.

� TDIMj is used to store the Array Speci�cation axes.

� TUNITj is used to store the Data Descriptor's unit.

� TTYPEj, TTYPEj+1,.. are used to store the Data Descriptor Component Names when

DCEDIMn is more than 1.

� TDISPj is used to store the Data Descriptor display format.

� TLMINj and TLMAXj are used to store the legal range of values. This is used by us and by

HEASARC software for �ltering and binning.

1.5 Support for preferred columns or axes

We expect to implement support for preferred axes prior to launch.

� CPREF (string) speci�es preferred quantities: the most interesting axes, and the ones you

should bin on if no axes are speci�ed. Its format is

CPREF = 'DETX,DETY' / default axes to bin on

CPREF = 'PHA(DETX,DETY)' / default axes to bin on, with weighting function

The optional weighting function is the name of a column to weight by, which must be a single

FITS scalar column. The binning axes can include compound column names, but not array

columns.

5

1.6 Extra information for header keys

On reading a FITS header, all the mandatory FITS keywords and the keywords de�ning the

BINTABLE/IMAGE and overlying ASC TABLE structure are parsed. All remaining keywords

are interpreted as block header keys.

We introduce a new set of header keywords analagous to the TTYPEn series, for attributes.

We have implemented two di�erent forms of FITS enhanced keyword support (to store more info

about each keyword) - the `long form' and the `short form'. In the short form, info is packed into

the FITS comment keyword. In the long form, needed for long keyword names, separate keywords

are used.

In all the following cases, string keywords with blank or default values should be omitted (i.e.

DUNITn should not appear in the �le if the unit is blank).

The short form is

FOO = value / [unit] {type} desc

The unit convention is as per CFITSIO. The new {type} convention, to be implemented by us in

Jan 1999, speci�es an intended data type for a numeric keyword, allowing us to distinguish between

oat and double, or long and unsigned short, say. For most applications this is not important

and can be ignored, but sometimes you want to preserve the information. The values within the

parentheses are

'E' 4 byte real

'D' 8 byte real (default for value containing decimal point)

'I' 2 byte integer

'J' 4 byte integer (default for value without decimal point)

'U' 2 byte unsigned integer

'V' 4 byte unsigned integer

We will usually omit the type information for the two default cases.

We map a DM header key FOO to the following set of (long form) FITS header keywords:

FOO = value / [unit] desc CDM

DTYPEn = 'FOO' / CDM

DUNITn = 'unit' / CDM

DDISPn = 'disp' / CDM

DFORMn = 'datatype' / (CDM controversial)

On reading, we set the name to be FOO, the unit to be �rst the DUNITn, next the value in []

after the / in FOO, �nally to blank if neither of the preceding are there. The comment is set to be

whatever is after the / in FOO with the exclusion of any [] token.

For long keyword names, keyword FOO is replaced by DVALn:

6

DVALn = value / [unit] desc CDM

DTYPEn = 'LONG_KEY_NAME' / CDM

DUNITn = 'unit' / CDM

DDISPn = 'disp' / CDM

DFORMn = 'datatype' / (CDM controversial)

The values of n must be unique in a given HDU block, but need not be consecutive, although it

would be nicer to keep them so.

NOTE: We have just heard (Jan 99) that Bill Pence is implementing a di�erent

scheme, using HIERARCH keywords introduced by ESO, in CFITSIO. I haven't seen

these keywords discussed in HEA forums, so I'm awaiting more details.

� DTYPEn gives the name of the Data Descriptor. This keyword must be present if any of

DUNITn, DVALn, DFORMn, DDISPn, DDESCn are present, otherwise it must be omitted.

� DUNITn (string) gives the unit for the Data Descriptor. If the unit is blank, it should be

omitted. The unit should also be copied to the root keyword comment as speci�ed by the

new CFITSIO convention.

� DVALn (arbitrary type) gives the element value for the attribute. If the attribute name in

DTYPEn is 8 characters or fewer, the attribute name will be used as the keyword name

instead of DVALn. On reading, the data type for the Data Descriptor is inferred from the

format of the element value.

� DFORMn (string), if present, gives the data type for the element, overriding the data type

inferred from the formatting of the value header keyword and the short form type convention.

Omit for strings and signed numeric types.

� DDISPn (string) gives the Data Descriptor recommended display format; this should be used

very sparingly, and is not yet implemented.

� DDESCn (string) gives the Data Descriptor description. If absent, the default value is the

comment string following the / in the keyword containg the value. DDESC has not yet been

implemented.

� DLMINn, DLMAXn to record the legal range of a descriptor. Default is -Inf to +Inf; only

applies to numeric data types. This has not yet been implemented.

� MTYPEn and MFORMn and METYPn keywords may also be used to group keys.

7

1.7 Array keywords

We provide limited support for 1-D array key descriptors. Traditionally related values such as

coe�cients of polynomials have been written using indexed keywords, e.g. COEFF1, COEFF2,

COEFF3... This provides an obvious model for array valued keys. However, indexed keywords have

also been used for other purposes, so on read we cannot assume the presence of a trailing digit

indicates an array keyword. Also, NAXIS and NAXISn are both de�ned keywords, and if we used

the naive interpretation both would be descriptors with name NAXIS.

� DTYPEn: We therefore require that array keys be written using the DTYPEn keyword with

the special syntax

\item DTYPE3 = 'COEFF* '

� Here the asterisk is used to imply a set of array keywords. The general format is DTYPEn =

'NAME*'; if NAME is less than or equal to 7 characters, the values will be stored in keywords

NAME1, NAME2, NAMEm.

� iDVALn: When the 'NAMEi' exceeds 8 characters, iDVALn will be used instead. Example:

DTYPE4 = 'COEFFICIENT*' / Array keyword

4DVAL1 = 0.001 / Coeff for n=1

4DVAL2 = 3.4E-6 / Coeff for n=2

4DVAL3 = -14.328 / Coeff for n=3

� On read, the dimension of the array is equal to the largest value of i present as a NAMEi.

Missing values of i are set to zero or blank; elements of the array must be all numeric or all

string.

1.8 Images

For Image Data descriptors, the following are existing FITS keywords:

� BUNIT (string) Unit of image data values (B is for 'brightness')

� BITPIX (integer) coded value implies the data type.

� BSCALE, BZERO values used e.g. for unsigned data types; handled by CFITSIO.

We plan to introduce

� BTYPE (string) Name of image data array. If absent, default to value of HDU name.

� BFORM (string) as DFORMn, to impose a data type interpretation overriding the BITPIX

value.

These have not yet been added.

8

1.9 Coordinate Systems

Relevant docs:

FITS standard,

ftp://fits.cv.nrao.edu/fits/documents/standards/fits_standard.ps

ftp://fits.cv.nrao.edu/fits/documents/standards/bintable_aa.ps

the WCS draft document,

ftp://fits.cv.nrao.edu/fits/documents/wcs/wcs.all.ps

and the OGIP94-006 document,

http://legacy.gsfc.nasa.gov/docs/heasarc/ofwg/docs/summary/ogip_94_006_summary.html

(all of which are mirrored in /proj/jcm/ASC/FITS/docs)

We will store coordinate info as follows: The general transform supported by DM has the follow-

ing parameters, named according to the FITS keywords used in the FITS IMAGE implementation...

Dimension n

Transform type (string): ctype

Number of transform function parameters m (depends on ctype, usually = zero)

Transform function parameters (doubles): prop1 to propm

Reference pixel: crpix1 to crpixn

Reference value: crval1 to crvaln

Reference scale: cdelt1 to cdeltn

Rotation angle: crota (only used in 2D case)

Rotation matrix: cd(n,n)

The rotation angle is zero and rotation matrix is unity for all our data at the moment. Recently,

CDELT has been deprecated in favor of the CD matrix, but we are continuing to use CDELT

anyway.

We distinguish between the �rst transform on a particular descriptor, which is considered the

principal transform, and subsequent transforms. Slightly di�erent keywords are used for principal

and other transforms. In addition, di�erent keywords are used for transforms for the following

descriptor cases:

1) the axes of an image data array (Axis number j)

2) a table scalar column (FITS column number i)

3) the axes of a table array column (FITS column number i, axis p); not yet supported.

4) values of an image data array (not yet supported).

For the principal transform: (these are HEASARC proposed keywords)

Case 1 2 3

9

ctype CTYPEj TCTYPi pCTYPi

crpix CRPIXj TCRPXi pCRPXi

crval CRVALj TCRVLi pCRVLi

cdelt CDELTj TCDLTi pCDLTi

crota CROTAj TCROTi pCROTi

cd CDjj TCDii ppCDi

For subsequent transforms: (case 3 not supported; these are ADASS FITS BOF proposed

keywords)

Case 1 or 2

ctype CTYPEjk

crpix CRPIXjk

crval CRVALjk

cdelt CDELTjk

crota CROTAjk

cd CDjjk

In this case k is a single upper case letter from A to Z. We reserve the choice of the letter P to

ag the physical coordinate transform (IRAF's LTM/LTV) which maps original pixels to current

logical pixels.

1.10 Coordinate systems on image block axes

Traditional use of CTYPE: Construction of the CTYPE keyword (or TCTYP, etc): In a classic

piece of broken design, we use CTYPE to store both the name of the coordinate descriptor quantity

and the name of the projection. The hack is as follows: for now, we support only 1-D LINEAR

transforms and 2-D WCS spherical projections. if the transform is not LINEAR, it must be one

of the WCS projections. In this latter case, there are a pair of CTYPEs, CTYPEn and CTYPEm

(hopefully with m = n + 1). The value of each of these is an 8 byte string; the �rst 4 bytes contain

the axis name padded with trailing dashes, and the last 4 bytes contain the transform code padded

with leading dashes. The only allowed value pairs for the axis names are:

RA-- DEC- Equatorial

GLON GLAT Galactic

ELON ELAT Ecliptic

HLON HLAT Helioecliptic

SLON SLAT Supergalactic

PLON PLAT Planetary

XLON XLAT Generic latitude and longitude

We add the extra names

10

LONG NPOL Generic with north polar angle not latitude

This is used only with the TAN transform and is useful for a WCS for telescope o�-axis angle and

azimuth.

The allowed values for the transform type are:

-TAN, -AZP, -SIN, -STG, -ARC, -ZPN, -ZEA, -AIR, -CYP, -CAR, -MER, -CEA, -COP, -COD,

-COE, -COO, -BON, -PCO, -GLS, -PAR, -AIT, -MOL, -CSC, -QSC, -TSC.

If the CTYPE value does not include the dash character '-' in byte 5, we may assume it is a

LINEAR transform in which case the descriptor name is the full value of CTYPE.

For the ASC DM we introduce the following extra keywords:

� CNAMEn Name of axis (overrides value of CTYPEn, used in case where CTYPE is not a

LINEAR transform to override the standard component names like RA and DEC; i.e. when

XLON and XLAT are present in CTYPE.)

� CUNITn Unit of axis (FITS standard keyword)

We also support the use of MTYPEn, MFORMn for de�ning composite axes. Their use is

entirely analogous to their use with table columns.

1.11 Coordinate Data Descriptors: columns

We note the following existing HEASARC FITS keywords and their use:

� TCTYPj (string) is used for the coordinate descriptor component name, (or descriptor name

for a non-composite descriptor), and transform type.

� TCNAMj (string) Like CNAMEn for images.

� TCUNIj (string) is used for the coordinate descriptor unit.

� TCDLTj (real) is used for the Data Coordinate Transform scale.

� TCRPXj (real) is used for the Data Coordinate Transform reference pixel element value.

� TCRVLj (real) is used for the Data Coordinate Transform reference world element value.

� RADECj (string) and EQUINj (real) are used for RA, DEC column pairs to give the system

('ICRS', 'FK4', 'FK5') and equinox (2000.0, 1950.0, etc)

We also want to give a name to a composite (2D) coordinate descriptor. For this we introduce

the ASC-de�ned keyword

11

� MCTYPn (string) is used for the Data Coordinate descriptor name for the primary coordinate

system attached to composite column MFORMn. In other words, if MFORM4 = 'X,Y' and

TTYPE3='X', TTYPE4='Y' then the coord descriptor name is the value of MCTYP4 and

the coord descriptor component names are values of TCTYP3 and TCTYP4, with transform

values given by TCRPX3/4 etc.

1.12 Coordinate descriptors for array column axes

The following keywords are all HEASARC-speci�ed.

� iCTYPj is used for the Component Name for an Axis Group Coordinate quantity correspond-

ing to the i'th axis.

� iCUNIj is the unit of the axis group coordinate quantity.

� iCRPXj is the reference pixel value for the axis group quantity in the axis group coordinate

transform.

� iCRVLj is the reference world value for the axis group coordinate quantity in the axis group

coordinate transform.

� iCDLTj is the transform scale in the axis group coordinate transform.

1.13 Keywords for recording �lters

This section describes the keywords used by the ASCDM Data Subspace code.

Suppose we �lter a �le with the constraint

MASS = 14.2:230.1,GRADE=1:5,10:12,14:23

In the output FITS �le this will be recorded as

DSTYP1 = 'MASS' / Rest Mass

DSUNI1 = 'kg ' / Unit for DSTYP1

DSVAL1 = '14.2:230.1' / Range for DSTYP1

DSTYP2 = 'GRADE' /

DSVAL2 = '1:5,10:12,14:23' / Ranges for DSTYP2

Note: The Data Subspace conventions are internal to ASC and are not agreed as part of the

CDM.

The example GRADE above but with 30 values instead of 3 would be better stored as a table,

as follows:

12

DSTYP2 = 'GRADE' /

DSVAL2 = 'TABLE' / Values are in a table

DSREF2 = ':GRADE_FILTER' / Name of table

and in an HDU elsewhere in the �le:

XTENSION='BINTABLE'

NAXIS1 = 8

NAXIS2 = 30

TFIELDS = 2

TTYPE1 = 'GRADE_MIN'

TFORM1 = '1J'

TTYPE2 = 'GRADE_MAX'

TFORM2 = '1J'

EXTNAME = 'GRADE_FILTER'

MTYPE1 = 'GRADE'

MFORM1 = 'GRADE_MIN,GRADE_MAX'

METYP1 = 'R'

similar to the GTI table given above. The colon before the table name was recommended as part

of a broader scheme to specify URLs for FITS HDUs; I'm not sure how standard it will be.

When there is more than one DSS component, we need to generalize these keywords. We pre�x

abbreviated versions of the keywords with the DSS component number:

� iDSVALj instead of DSVALj

� iDSREFj instead of DSREFj

� The same �lter (value of j) in components 2 onwards must share the same name (DSTYPj),

unit (DSUNIj), and data type. So we don't need keywords for those.

The presence of an iDSVALj (or iDSREFj) keyword for any value of j implies the existence of

component i. If iDSVALj exists but iDSVALk does not, the value of iDSVALk is assumed to be the

same as DSVALk. The idea here is that components will often have many �lters in common, and

just a couple that are di�erent.

Here is an example with components: it represents a merged spectrum list with di�erent extrac-

tion radii for di�erent energies.

DSTYP1 = 'ENERGY' / Energy

DSUNI1 = 'keV ' / Unit for DSTYP1

DSTYP2 = 'RADIUS' / Extraction radius

DSUNI2 = 'pixel' / Unit for DSTYP2

13

DSTYP3 = 'GAIN' / Calibration gain

DSVAL1 = '0.1:2.0' / Range for Energy

DSVAL2 = '14' / Extraction radius

DSVAL3 = '2:' / Range for gain

2DSVAL1 = '2.0:5.0,8.0:10.0' / Energy range, 2nd component

2DSVAL2 = '30' / Extraction radius

This means that the data contains energies in the range 0.1 to 2.0 keV extracted in a radius of

14 pixels (around some point), and also energies in the ranges 2 to 5 and 8 to 10 keV, all extracted

in a radius of 30 pixels. The data was also selected in all cases for a gain between 2 and in�nity.

(there is no 2DSVAL3 so the gain for the second component is assumed to be the same as for the

second component, i.e. DSVAL3) Datasets like this usually arise from merging two datasets with a

single component in their data subspace. One might write the above DSS as a logical expression:

{ [(ENERGY in 0.1:2) AND (RADIUS = 14)] OR

[(ENERGY in 2:5,8:10) AND (RADIUS = 30)] }

AND (GAIN >2)

Another more realistic case is multiple GTIs for di�erent ACIS chips:

DSTYP1 = 'CCD_ID' / Chip number

DSTYP2 = 'TIME' / Time

DSUNI2 = 's ' / Unit for DSTYP2

DSTYP3 = 'PHA ' / PHA

DSVAL1 = 0 / Chip ACIS-I0

DSVAL2 = 'TABLE' / DSTYP2 ranges are in BINTABLE HDUs

DSREF2 = ':GTI0' / Good times for chip 0

DSVAL3 = '2:1024' / Good PHA range

2DSVAL1 = 1 / Chip ACIS-I1

2DSREF2 = ':GTI1' / Good times for chip 1

3DSVAL1 = 2 / Chip ACIS-I2

3DSREF2 = ':GTI2' / Good times for chip 2

4DSVAL1 = 3 / Chip ACIS-I3

4DSREF2 = ':GTI3' / Good times for chip 3

5DSVAL1 = 6 / Chip ACIS-S2

5DSREF2 = ':GTI6' / Good times for chip 6

6DSVAL1 = 7 / Chip ACIS-S3

6DSREF2 = ':GTI7' / Good times for chip 7

Note no DSUNI1 keyword is written since Chip number doesn't have a unit. Logically this DSS

translates to:

14

(PHA in 2:1024) AND {

(CCD_ID = 0 AND TIME = GTI0) OR (CCD_ID = 1 AND TIME = GTI1)

OR ...}

1.13.1 Special cases

For back compatibility for non-compliant �les, the following special cases are recognized on reading

and writing: (only the �rst is currently done by our implementation).

1. On writing, if the axis name is TIME, write the data cell for the �rst DSS component as

TABLE GTI. On reading, if a GTI extension exists, interpret it as a data subspace data cell

on quantity TIME.

2. Also calculate the sum of the GTI intervals and store as an attached attribute ONTIME,

and multiply by an attached attribute DTCOR if present, to generate another attached at-

tribute LIVETIME. On reading, interpret the keywords ONTIME, DTCOR and LIVETIME

as attached attributes to the TIME data subspace axis.

3. Recognize the HEASARC timing keywords SCSEQBEG, SCSEQEND, DATE-OBS, TIME-

OBS, DATE-END, TIME-END, ONTIME, MJD-OBS, TSTART, TSTOP, MJDREF and

their variations, all of which are associated attributes of the TIME data subspace axis. In the

absence of a GTI record, use the start and stop times in mission time or, if no mission time is

available, JD or MJD, as deduced from these keywords, to de�ne a single time range element

for the data subspace.

4. On writing, if the axis name is PHA, write the data cell as the indirect spec [MINCHAN:MAXCHAN].

On reading, check for the MINCHAN and MAXCHAN keyword pair and interpret as a data

subspace data cell on axis PHA.

5. A coordinate system on a data subspace axis whose components are RA and DEC will have its

reference world element repeated as header keywords RA NOM and DEC NOM. On reading,

these keywords will be recognized as the component names for a 2D data subspace axis on

sky pixel position.

Note: Writing data subspaces to FITS �les could be complicated. Suppose we have a data

subspace cell which needs to be written as a table (e.g. GTI). We normally would write all structural

information �rst, before writing the rows of the main Table Data section, but now we need to write

a separate BINTABLE extension. Perhaps the best solution is to make an initial pass through the

data subspace �rst and write all data subspace extensions before beginning the main ASC Table

extension.

15

2 Systematic algorithm for creating descriptors

This section was written to help the ASCDM implementors, but I'll include it in here in case it

clari�es the earlier sections.

I'll describe this from the point of view of both writing and reading a header. The central

attribute of any descriptor is its name, so we look for that �rst. I then give the order of priority for

each piece of information. Thus the column descriptor name is given as 'MTYPE,TTYPE', meaning

that on read you �rst look for MTYPE, and then if there is no MTYPE you look for TTYPE; on

write you start from the other end and use TTYPE if you can, but if TTYPE is insu�cient to

encode the information (e.g. it's a vector column) you use MTYPE.

2.1 Existence of a descriptor on read

� Descriptors that may exist without explicit names in the �le are the image data descriptor

and image axis descriptors. Their existence is forced by the presence of an image block.

� Column descriptors must have corresponding TTYPE or MTYPE keywords

� Key descriptors must have a DTYPE keyword or an ordinary FITS header keyword that is

not an ASCDM-reserved name.

� Coordinate descriptors must have a CTYPE (TCTYP, iCTYP) or CCTYP keyword.

2.2 Descriptor names

� Column descriptor: MTYPE if composite, else TTYPE

� Key: MTYPE, else DTYPE if needed, else keyword name

� Image data descriptor: BTYPE, else EXTNAME, else "IMAGE".

� Filter: DSTYP

� Coord attached to column: MCTYP, else TCTYP

� Image axis coord: MTYPE, else CCTYP, else CTYPE

Special case: if a column descriptor has an attached coordinate system TCTYP which is not

a LINEAR transform, it must be a vector column of dimension 2, paired with some other column

with a matching TCTYP, even if there is no MFORM keyword. For example if we have

16

TTYPE3 = 'X'

TTYPE4 = 'Y'

TCTYP3 = 'RA---TAN'

TCTYP4 = 'DEC--TAN'

we pretend that the keywords MTYPE1 = 'POS', MFORM1 = 'X,Y', MCTYP1 = 'EQPOS' were

actually present. The column component names are 'X', 'Y' and the coordinate component names

are 'RA', 'DEC'. The game is:

� I have a TTYPE; is it part of an MFORM?

� If not, does it have a TCTYP that needs a partner? RA|TAN needs DEC{TAN as its

partner.

� If so, make up an MTYPE name and an MCTYP name for it (see below).

� If not, it is a simple column and TTYPE gives its name.

Now how will we assign these MTYPE and MCTYP names? We are going to recognize the

following special cases:

Component names Default composite name

X,Y POS

X, *Y *, for all *

RA,DEC EQPOS

GLON,GLAT GALPOS

and in all other cases do POSn, where n is some unique integer. This means that TDETX,

TDETY maps to TDET.

2.3 Descriptor component names

� Column descriptor: TTYPE

� Key: DTYPE or keyword name

� Image dd: not supported

� Filter: DSCPT

� Column coord: TCTYP

� Axis coord: CTYPE

17

Here's an interesting question. For 2D �lters, the natural thing is to specify a single DSTYP

and DSVAL, with the DSVAL being a region string. But we need somewhere to put two (optional)

component names and internally we need to point to two associated column descriptors. So do we

go with the MTYPE paradigm and have MDTYP1 = 'POS', MDFOR1 ='X,Y', DSTYP1 = 'X',

DSTYP2 = 'Y' and instead of having two DSVALs have an MDVAL with MDVAL1 = 'circ 2 30

2'? Or do we make DSTYP the thing that can be composite, and have instead DSTYP1 = 'POS',

DSVAL1 = 'circ 2 30 2', DSCPT1 = 'X,Y' ? I think the latter is much more consistent with the

rest of data subspace, and I like it better, so I'm going with it for now. Comments welcome.

2.4 Element dimensionality

� Column descriptor: infer from MFORM (and TCTYP) else 1

� Key: always 1 for now

� Image dd: always 1 for now

� Filter: infer from DSCPT, not to be implemented yet

� Column coord: infer from MFORM of parent

� Axis coord: infer from MFORM

2.5 Descriptor units

� Column descriptor: TUNIT

� Key: DUNIT, else Pence convention on keyword with the name

� Image dd: BUNIT

� Filter: DSUNI

� Column coord: TCUNI

� Axis coord: CUNIT

2.6 Descriptor values

� Column dd: current row and cell

� Key: DVAL or keyword value

� Image dd: image data

18

� Filter: DSVAL

� Column coord: via transform

� Axis coord: via transform

2.7 Data type

� Column dd: TFORM

� Key: DFORM or infer from format of value

� Image dd: BFORM, else BITPIX

� Filter: DSFORM, else type of assoc-col

� Column coord: infer from transform type, default double

� Axis coord: infer from transform type, default double

2.8 Descriptor desc

� Column dd: TDESC or / comment after name keyword

� Key dd: DDESC or / comment after value keyword

� Image dd: BDESC or / comment after BTYPE

� Filter: DSDSC or / comment after name keyword

� Column coord: TCDSC or / comment after name keyword

� Axis coord: CDESC or / comment after name keyword

2.9 Display format

� Column dd: TDISP

� Key: DDISP

� Image dd: not supported

� Filter: not supported

� Column coord: not supported

� Axis coord: not supported

19

2.10 Element type

� Column dd: METYP, default to V

� Key: METYP

� Image dd: METYP

� Filter: always R

� Column coord: inherit from parent

� Axis coord: inherit from parent

2.11 Array dimensionality

� Column dd: Infer from TFORM and TDIM

� Key: Always 0 for now

� Image dd: NAXIS

� Filter: Always 1

� Column coord: Always 0

� Axis coord: Always 0

2.12 Array sizes

� Column dd: Infer from TFORM and TDIM

� Key: n/a for now

� Image dd: NAXISn

� Filter: infer from DSVAL string

� Column coord: n/a

� Axis coord: n/a

20

2.13 Legal range

� Column dd: TLMIN/TLMAX

� Key: DLMIN, DLMAX

� Image dd: not yet supported

� Filter: n/a

� Column coord: not supported

� Axis coord: not supported

2.14 Transform type

� Column coord: Infer from TCTYP

� Axis coord: Infer from CTYPE

2.15 Transform values

� Column coord: TCRVL and TCRPX and TCDLT

� Axis coord: CRVAL and CRPIX and CDELT

3 Proposed future conventions

In this section I describe possible keywords that we might use in later releases; these aren't �nal

but give an idea of the directions we're considering.

3.1 Future enhancement for ASC `element types'

How many BINTABLE columns are used for a single ASC Table column? We will store a value

element of dimensionality d in d separate columns of the table. A range element will require 2d

columns, and a value with uncertainty will thus require 3d columns. A 2D region descriptor may

be stored as a string in a single column; details of the implementation are to be worked out. The

element type is stored in a special string keyword METYPn tied to the MTYPE/MFORM keywords.

If it is absent, the default type V (value) is assumed. Thus, by knowing the element dimensionality

d

i

and element type t

i

for each ASC Table column, we can assign the mapping to BINTABLE

columns. The number of BINTABLE columns for ASC Table Column i is d

i

N

BT

(t

i

) as tabulated

below:

21

t

i

N

BT

(t

i

) Description

V 1 Value only

B 2 Bin

BF 1 Fixed width bin

S 2 Bin start

SF 1 Fixed width bin start

I 3 Value plus interval

R 2 Interval only

K 2 Scale range

KF 1 Fixed scale range

L 3 Two sided scale (log)

LF 1 Fixed two sided scale

U 2 One sided uncertainty

UF 1 Fixed one sided uncertainty

T 3 Two sided uncertainty

TF 1 Fixed two sided uncertainty

REG 1 2D region

Then the total number of BINTABLE columns required for the c columns of the ASC Table is

TFIELDS =

c

X

i=1

d

i

N

BT

(t

i

)

and the starting BINTABLE column number j for ASC Table column i is

j(i) = 1 +

i�1

X

k=1

d

k

N

BT

(t

k

)

The following proposed keywords are reserved for possible future ASCDM implementation.

� MITYPn (string) gives the interval type for elements of type VU or R. Possible values are `[]'

(default), `()', `(]', '[)'.

� MULEVn (real) gives the uncertainty level, between 0.0 and 1.0, default 1.0.

� MDTYPn (string) gives the data type, overriding the default data type in TFORMj. This

allows us to add data types which are not directly supported by the FITS standard. Values

of MDTYPn are speci�ed in the data model design document.

� MUMINn gives the uncertainty lower value for a �xed uncertainty. Default CUVALn.

� MUMAXn gives the uncertainty upper value for a �xed uncertainty. Default CUVALn.

22

� MUVALn gives the uncertainty value for a �xed uncertainty. Default zero.

� MZTYPn (string) gives the element type for the systematic zero point uncertainty.

� MSTYPn (string) gives the element type for the systematic scale uncertainty.

� MZMINn, MZMAXn, MZVALn give the systematic zero point uncertainty values.

� MSMINn, MSMAXn, MSVALn give the systematic scale uncertainty values.

3.2 Element types

To make a column of element type INTERVAL or RANGE, go as follows:

dmColumnCreateInterval(table, name, type, unit, desc, cptNames, elementType)

where

name = "TIME", type = dm_DOUBLE, unit = 's', desc = 'Spacecraft Time',

cptNames = { "TSTART", "TSTOP" }, elementType = dmRANGE.

Suppose the next available FITS column is 4, and this is the second CDM grouped column. In the

FITS �le this should map to:

TTYPE4 = 'TSTART ' / TIME

TFORM4 = '1D ' / Data type for column 4

TUNIT4 = 's ' / Unit for column 4

TTYPE5 = 'TSTOP ' / TIME

TFORM5 = '1D ' / Data type for column 5

TUNIT5 = 's ' / Unit for column 5

MTYPE2 = 'TIME ' / Spacecraft Time

MFORM2 = 'TSTART,TSTOP' / CDM meta-column

METYP2 = 'R' / ASC Element Type is Range

3.3 Extra keys for header keywords

The following proposed keywords are reserved for possible future implementation

� DUMINn gives the uncertainty minimum value.

� DUMAXn gives the uncertainty maximum value.

� DITYPn (string) gives the interval type for elements of type VU or R. Possible values are `[]'

(default), `()', `(]', '[)'.

23

� DULEVn (real) gives the uncertainty level, between 0.0 and 1.0, default 1.0.

� DARELn (string) gives the name of the `parent' Data Descriptor to which the attribute is

related - either the name of a column or of another attribute. This allows us to de�ne attributes

which belong to individual columns.

3.4 Data Subspace keys

The following proposed keywords are reserved for possible future implementation

� DSITYPj interval type for axis j.

� DSjLm, DSjUm: lower (L) and upper (U) interval values for a range. Implies

DSj = (DSjL1:DSjU1),(DSjL2:DSjU2),...(DSjLn,DSjUn)

� DSCNAMn (string): Name of coord quantity for axis group n. This and other coordinate info

defaults to the coordinate system on any table column mapping to the DSS axis.

� DSCTYPj (string): Name of coord quantity component for axis j.

� DSCDLTj (string): Transform scale for axis j.

� DSCRPXj (real): Reference pixel value for coord transform

� DSCRVLj (real): Reference world value for coord transform.

� DSCUNIj (string): Unit for coord quantity

� DSCj (string): Data Cell in world coord units

� DSCjLm, DSCjUm: Data Cell min and max element values (shares interval type for Data

Descriptor, i.e. DSITYPj).

The data cell speci�cation is parsed as follows: (this is a long term goal, not to be implemented

for the time being):

1. If the �rst character is numeric, [or (, the spec is a range.

2. Otherwise, if the �rst (space-delimited) word is the special string TABLE, it is a table speci-

�cation.

3. Otherwise, it is a 2D region speci�cation.

24

4. For a range, we determine the interval type by locating the closing parenthesis. The allowed

types are [],[),(],() representing open, closed and semi-open intervals. No parentheses means

closed interval.

5. Within the parentheses, we seek a colon to parse the string as [a:b]. If no colon is present,

interpret as [a:a]. If a or b is non-numeric, interpret them as the names of other header

keywords (an indirect range speci�cation). The purpose of the indirect range speci�cation is

to allow us to continue to write back compatible �les.

25

